
Tutorial 35 seq and follow

174

In general, whenever your patch is capable of stopping seq while notes are being recorded
or played back, there is the potential for vital note-off messages to be lost. This is
especially true if your patch sends stop, record, or play messages by some automatically
generated means. Bear this potential danger in mind when constructing your patch, and
include an object such as flush, midiflush, poly, or makenote—whichever is appropriate—to
provide missing note-offs. Examples are shown in Tutorial 13.

• Record a sequence (or use the bourrée excerpt), and play the sequence with a start
message. Try changing the transposition with the hslider while the sequence is playing.

follow

The follow object is very similar to seq in its ability to record MIDI data. But whereas seq
only records MIDI messages, follow can also record a sequence of single numbers that are
not in the form of complete MIDI messages (such as the pitches from MIDI note-ons).

follow can record MIDI messages, or single numbers (e.g., just note-on pitches)

A sequence can be stored in follow by recording MIDI data, by recording a series of single
numbers, by reading in a file with a read message, or by typing in a file name argument.
Once it has a stored sequence, follow can use that sequence as a musical score, and follow
along while a performer plays the music. Each time the performer plays a pitch that
matches the next note-on in the stored sequence, follow sends the pitch out its right outlet
and sends the index number of that note’s position in the sequence (1, 2, 3, etc.) out its left
outlet.



Tutorial 35 seq and follow

175

The particular utility of this score-following feature is that the index numbers can be used
to trigger other notes, or any other process such as, say, turning on a metro when the 15th
note is matched.

How follow Follows

When follow receives the message follow with a number argument, it begins to look for
incoming pitches which match the notes in the score, starting at the index specified in the
argument. For example, follow 10 causes the object to look for incoming pitches that match
the 10th note in the score. When the matching pitch is received, follow sends that pitch
out its right outlet, and sends the index out its left outlet.

The follow object even allows for wrong notes, so if the performer plays a couple of
spurious notes, or skips a note or two, follow will still be able to keep track of the
performer’s progress through the score.

One can also step through the score with repeated next messages. After a follow message has
been received, the message next triggers the pitch at the specified index and increments the
pointer to the next index.

An Attentive Accompanist

When we use the index numbers from the left outlet of follow as addresses of a table, or
addresses of some other array object like funbuff, the index numbers can trigger other
values. In this way, we can create an accompanist who “knows the score” and follows
along with the performer. Each time the performer plays a note of the score, the
accompanist has a specific reaction—play a simultaneous note or notes, play some
independent melody, rest, whatever—and seems to follow along with the performer.



Tutorial 35 seq and follow

176

We’ve made such an accompanist in Patch 2. The accompanist plays the left hand part of
the Bach E-minor bourrée while you play the right hand part. The follow object has loaded
the sequence file bourrée.sc to use as the score. Each time a note of the score is played, an
index number is sent out that triggers some sort of reaction.

• Click on the follow 0 message to start the score-follower at the beginning of the score.
Play the right hand part of the bourrée excerpt and Patch 2 will play the left hand part
along with you.

• If you’ve forgotten how the melody goes, read the bourrée.sc sequence into the seq
object in Patch 1 and listen to it.

• Click on follow 0 again, and play the melody with an occasional wrong note or skipped
note. If you don’t mess up too much, follow manages to account for your mistakes and
continues following the score.

• Try the melody again, with ritards at the end of the phrases. The extra notes that the
accompanist plays match your tempo.

Analysis of Patch 2

Sometimes we want the left hand to play a note along with the right hand, other times we
want the left hand to do nothing new (when the right hand is playing the second of a pair
of eighth notes and the left hand is just holding a quarter note), and occasionally we want
the left hand to play a note in between notes played by the right hand. How do we
accomplish each reaction?

The index numbers are first sent to a subpatch called patcher silencer. This subpatch simply
filters out the index numbers which we don’t want to trigger a note of the
accompaniment. The sel objects select those index numbers and pass the rest on.

Contents of the patcher silencer subpatch



Tutorial 35 seq and follow

177

Notice that sel objects can be linked together to select more than 10 numbers, since the
numbers that are not matched by the first sel object are passed out the rightmost outlet to
the second sel object.

The remaining index numbers are sent as addresses to funbuff, which sends out an
appropriate accompanying pitch value. To make funbuff respond properly, we simply
made a list of addresses and values and saved the list as a funbuff file named bourrée.fb.

• If you want to see the contents of funbuff, choose Open As Text… from the File menu
and open the file named bourrée.fb.

We could have also stored the accompaniment pitches in a table—or in a coll object,
which will be explained in Tutorial 37.

So far we have made the accompanist play some notes that are simultaneous with the
melody notes, and we’ve made the accompanist rest on melody notes that are
unaccompanied, but how about when the accompanist has to play notes on its own, in
between melody notes? This occurs twice in the score, once at the end of each phrase.

To help the accompanist play notes on its own, the patcher addnotes object measures the
tempo of the performance and plays notes with a delay time based on its perception of the
performer’s tempo.

Contents of the patcher addnotes subpatch

For example, the subpatch measures the amount of time between notes 24 and 25 of the
melody (the speed of an eighth note), then delays for that amount of time before
triggering the pitch 42. Likewise, the time between the 41st and 43rd melody notes (the



Tutorial 35 seq and follow

178

speed of a quarter note) is used as a delay time before sending out the pitch 38. This is a
simple (but fairly effective) method of analyzing the performer’s tempo and playing notes
in that tempo.

It’s always a good idea in programming (and elsewhere, for that matter) to prepare for the
unexpected. What happens if the performer accidentally misses one of these notes that we
need for analyzing the tempo and triggering added accompaniment notes?

If the performer misses the first note of a pair, for example, the second note will trigger a
ridiculously large value from the timer and the accompaniment note will get delayed far
too long. To protect against this eventuality, we have used split objects to limit the time
values that can be sent to delay within certain (only moderately ridiculous) extremes. If the
value from timer exceeds these limits, the delay object will use the delay time in its
argument. If the performer misses the second note of a pair but continues on, the added
note will never get played, but by then the performer will have passed that point anyway,
and follow will keep up with the performer.

The pitches from patcher addnotes and from funbuff are sent to makenote where they are
paired with the velocity of the right hand melody notes, so the accompanist is sensitive to
the performer’s dynamics, as well. Rather than use an algorithm or a lookup table to
provide durations for the accompaniment notes, we just picked a duration that seems to
work both as an eighth note duration and as a stylistically staccato quarter note.

Summary

A single track of raw MIDI data can be recorded and played back (at any speed) with the
seq object. The MIDI data is received from midiin and is transmitted by midiout. You can
also parse the data from seq using midiparse, and process the numbers with other Max
objects before transmitting them.

A recorded sequence can be saved as a separate file by sending a write message to seq. If
you check the Save as Text option in the Save As dialog box, you can open and edit the
file later with Open As Text…. A MIDI file can be read into seq by sending a read
message, or by typing in the file name as an argument.

The follow object allows you to record or read in a sequence, then use that sequence as a
musical score to follow along with a live performance. As the pitches received in the inlet
are matched with notes in the score, the index number for each note is sent out, and can
be used to trigger other notes or processes.


