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AN INFORMAL INTRODUCTION 

TO SOME FORMAL CONCEPTS 

FROM LEWIN’S 

TRANSFORMATIONAL THEORY
1

Ramon Satyendra

Since the publication of David Lewin’s Generalized Musical Intervals
and Transformations (GMIT),2 transformational theory has become an
active area within the discipline of music theory. Though this subdisci-
pline has been with us for some years now, a dialogue between transfor-
mational specialists and others has been slow to develop. The emergence
of broad-based critique and commentary has been inhibited in part per-
haps by the language barrier posed by the theory’s mathematics. This arti-
cle aims to bridge the gap by exploring in an informal context some of
the mathematical ideas from GMIT out of which later work has grown.3

GMIT’s generalized notion of interval encompasses both “Cartesian”
and “transformational” ways of conceptualizing music. How this double
view finds expression in the particulars of the theory is a central theme of
this article. Part one of the article considers what is entailed in this philo-
sophical dichotomy and how it is dissolved by the generalizing power of
the theory.As will be discussed, a musical system may be formed by com-
bining a group of musical transformations with a set of musical objects.
When the group and set are combined in the right way the result is a “sim-
ply transitive group action on a set,” a mathematical construct brought



into GIS theory to represent a transformational perspective. Parts two and
three introduce three types of mappings including the interval function of
a GIS. A knowledge of these is a prerequisite to the study of GISs and
neo-Riemannian groups. Part four explores the Cartesian perspective
offered by the definition of a GIS and demonstrates the kinship between
Cartesian and transformational perspectives by constructing a GIS from
a simply-transitive-group system. Part five outlines relationships between
atonal theory’s system of transpositions and inversions, neo-Riemannian
triadic systems, and Lewin’s simply-transitive-group systems.4 The last
part of the article considers “non-commutative” GISs. Two of Lewin’s
innovative findings will be illustrated. First, given any non-commutative
GIS, one can always discover another system, its dual, which exists in
a sort of “parallel universe” of transformations. Second, in any non-
commutative GIS, transposing a pair of notes by the same amount can
actually change the interval between the notes! In this circumstance, there
always exist operations (which are not transpositions) that preserve inter-
vals. Non-commutative GISs, dual GISs, and non-transposing, interval-
preserving operations are especially original topics in GMIT not treated
elsewhere.

I. A Transformational Perspective.

In GMIT, Lewin presents the idea of “interval” first in terms of a gen-
eralized interval system (GIS), and then in terms of a simply transitive
group action on a set. After both presentations, he remarks that the first
perspective is Cartesian and observer-oriented whereas the second per-
spective is gestural and subject-oriented. He also notes that the second is
more general: while a generalized interval system captures our histori-
cally grounded idea of interval as distance or measurement, a simply tran-
sitive group captures both the idea of interval as distance and of interval
as transformation (GMIT 158–59). We begin by looking at the transfor-
mational side of the dichotomy, the simply-transitive-group (STRANS)
perspective.

What is meant by the word “system” in “generalized interval system”
or “STRANS system”? Some may fear that a systematic procedure for
analyzing music is being offered. Actually, this is not at all the case. In
GMIT, “system” is being used in the dictionary sense of “an interdepen-
dent group of items forming a unified whole.” The definition of a simply
transitive group (Definition 1) refers to a system composed of two items:
the “space,” denoted by “S,” and the “group” whose elements transform
elements of the space. A group and a space together form a system which
mathematicians call a “simply transitive group action on a set” if they
jointly fulfill the simply transitivity condition specified in Definition 1.5
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Definition 1. The group STRANS of operations on S is simply transi-
tive when the following condition is satisfied: Given any elements s
and t of S, then there exists a unique member OP of STRANS such that
OP(s) = t. (GMIT 157).

In our first pass over the definition in Definition 1 we will focus on the
terms “S” (“S” stands for musical space) and “group” used in the defin-
ition. The first thing to note is both terms denote sets.6 Atonal theory
defines a set to be a collection of objects and this informal definition will
serve us also in GIS theory. While “space” and “group” each refer to a
set, the objects in each are different in kind. It is useful to liken the dif-
ference between space-elements and group-elements to the difference
between nouns and verbs. Group elements may be likened to verbs refer-
ring to musical actions such as “to transpose,” “to invert,” “to transform,”
whereas space-elements may be likened to nouns referring to musical
objects such as “notes,” “durations,” “triads.” A space contains the musi-
cal objects upon which actions are performed; a group contains the
actions themselves.

In Figure 1, G is the familiar T/I group of atonal theory consisting of
the twelve transposition and twelve inversion operations. When listening
to an octatonic piece (such as Scriabin, op. 74, no. 3) one might notice
the octatonic collection on one hand and the processes of transposition
and inversion on the other. G and S in Figure 1 together form a musical
system that accords with these two aspects of our listening experience.
The pitches comprise the space S and the actions performed on those
pitches comprise the group G.7

Is Figure 1 an STRANS system? It shows a group G of actions and a
musical space S of objects, so we have two of the three things we need.
But Definition 1 also asks that a simple transitivity condition be satisfied.
The condition is this: for any two space-elements (say the pitch classes C
and D≥) there must be exactly one group-element that will transform the
first into the second. Is this true for our musical system? The answer is
no. There are not one but two group elements that transform C into D≥:
group-element T3 and I3 both take C to D≥. So our proposed musical sys-
tem is not an STRANS system.

The existence here of two answers is familiar; in the T/I group there
are always two ways to get from one note to another. We can get from F

G = “T/I group” = {T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11,
I0, I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, I11}

S = {C, C≥, D≥, E, F≥, G, A, B≤}.

Figure 1
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to G by T2 or by I0, we can get from B≤ to F≥ by T8 or by I4. From this we
see that the familiar atonal system of transposing and inverting pitch
classes is not an STRANS system. What is gained by the unique-way
requirement of an STRANS system? After all, the familiar atonal system
seems to work well without fulfilling this requirement. We will return to
this important question later. But for now let us adjust the system in Fig-
ure 1 to fit the definition of an STRANS system.

We now select a smaller group, G′ = {T0, T3, T6, T9, I1, I4, I7, I10} while
keeping the same elements of S. Does this modified system satisfy the
simple transitivity condition? Now the only group element that takes C
to D≥ is T3. Let us try a few more examples. I1 is the unique element in
G′ that takes E to A, T6 is the unique element that takes E≤ to A, I10 is the
unique element that takes C to A≥. It can be verified that for any pair of
pitches in S, there is a unique group element in G′ that takes the first to
the second. So this modified system (S and G′) involves a simply transi-
tive group action on the set S—it conforms to the definition of STRANS.

We have suggested that elements of a group are actions, principles of
movement. This verb-oriented attitude corresponds to the STRANS per-
spective. The GIS, Cartesian perspective calls on us to see the selfsame
group elements differently, as nouns of distance or measurement. Both
perspectives are two sides of the same coin and there is an advantage to
seeing musical situations in both ways. Sentences (1)–(6) illustrate this
unified perspective by paraphrasing ordinary statements about music.
Each statement appears in two versions, one which emphasizes the verb
of action, the other the noun of distance. When the emphasis is on the
verb ((1), (3), and (5)), the transformational perspective seems dominant
and when the emphasis is on the noun ((2), (4), (6)) the Cartesian per-
spective seems dominant.

(1) In the recapitulation, Haydn transposes the second theme to the
tonic key. [Transformational]

(2) The distance between the two instances of the second theme is a
fifth. [Cartesian.]

(3) The first hexachord inverted and then transposed by seven gives
you the second hexachord. [Transformational.]

(4) The distance between the first and second hexachord is T7I.
[Cartesian.]

(5) The music in C major modulates to A≤ major. [Transformational.]

(6) The distance between the keys of C major and A≤ major is greater
than the distance between the keys of C major and G major. [Cartesian.]



It is immediately evident that some sentences are more idiomatic in one
form over another. It may seem odd in (4) to speak of the “distance”
between hexachords as T7I. However, such speaking is actually like
describing the distance between keys in (6). Though we are accustomed
to thinking of particular musical situations in one way, it is possible to
move between perspectives. Lewin notes there is a payoff that comes
from embracing a generalized conception which captures both senses of
“interval” (GMIT 159).

[A]bove we sketched a mathematical dichotomy between intervals in a
GIS and transposition-operations on a space: Either can be generated for-
mally from the characteristic properties of the other. More significant than
this dichotomy, I believe, is the generalizing power of the transforma-
tional attitude. It enables us to subsume the theory of GIS structure, along
with the theory of simply transitive groups, into a broader theory of trans-
formations. This enables us to consider intervals-between-things and
transpositional-relations-between-Gestalts not as alternatives, but as the
same phenomenon manifested in different ways.

With this generalized notion of interval in mind we can answer our
earlier question about the significance of the simple transitivity condi-
tion. When reckoning intervallic distances we intuitively expect unique
answers. It is counterintuitive to describe the straight-line distance be-
tween the chair and the table as both two feet and three feet. By requir-
ing that a musical system satisfy the simple transitivity condition we are
assured that the interval formed between any two points in a musical
space may be uniquely determined. If a system is not simply transitive, it
becomes counterintuitive to shift between transformational and interval-
lic perspectives. For instance it is intuitive to say that both T3 and I3 trans-
form C to E≤, but it is counterintuitive to think of the interval between C
and E≤ as both T3 and I3.8

More can be said on the systemic meaning of simple transitivity, but
from just the foregoing we can appreciate how Lewin’s theory and atonal
theory differ in orientation. In atonal theory, one does not typically ask
that a twelve-tone operation (such as I4) do double duty as a kind of inter-
val measurement. Consequently, in atonal theory a concern about simple
transitivity—that is about the uniqueness of interval measurements—
does not arise. However, if one is thinking of transformations (including
twelve-tone operations) as intervals, with the traditional connotation of
intervals as Cartesian extension, then the issue of simple transitivity
arises immediately. The simple transitivity condition is what GIS theory
needs to permit us to go back and forth conceptually between a view of
intervals as transformation and of intervals as Cartesian extension.
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II. Mappings in Transformational Theory.

Consider the sets S and S′: S = {C, C≥, D, E≤, E, F}, and S′ = {pp, p,
mp, mf, f, ff}. Figure 2a defines a mapping between them via a two-col-
umn table. In a mapping table the order of the rows does not matter
(though the order of items within each row does). For example, C≥ in Fig-
ure 2a is associated with p regardless of the row order. Mappings between
unlike sets (S→S′ where S≠ S′) arise in cross-domain analyses.9 Note
that in Figure 2a exactly one element in S′ is assigned to each element in
S. This uniqueness is the defining feature of a mapping: a mapping f from
a set S to another set S′ (notated as f: S→S′) is a rule that assigns exactly
one element in S′ for each element of S. (GMIT 1).

Mapping is synonymous with the mathematical term function. Map-
pings are often notated with parentheses in expressions such as f(x) = y,
T4(G) = B, and I5(C) = F.10 The first expression can be rewritten with
arrows in the form f: x→y, which is read “f maps x to y, or “the rule f
assigns y to x.” The latter expressions can be rewritten as T4: G→B, I5:
C→F. When referring to a mapping between sets one writes expressions
such as X→Y or S→S′ with upper-case letters.

Case 1, f: S→S. Transformations and Operations. Though it is pos-
sible to have a mapping between unlike sets as in Figure 2a, GMIT
reserves the terms “transformation” and “operation” to mappings between
like sets, mappings of the form f: S→S. A transformation is formally
defined as a mapping from a set to itself. An operation is the special case
of a transformation which is “one-to-one and onto” (GMIT 3). The mean-
ing of “one-to-one and onto” is illustrated in Figure 2b, a mapping table
for the group element T3.

We see that T3 maps elements of S to itself, where S is the 12 pitch-
classes, hence T3 is a transformation. The two defining traits of an oper-
ation are visible in Figure 2b: (1) Every element of S appears on the
receiving side of the arrows. This means the mapping is onto. (2) Every
element of S appears precisely once in each column. This means the
mapping is one-to-one. Since this mapping is one-to-one and onto and
from a set to itself, we conclude that T3 is an operation. Instead of “oper-
ation” some authors use the synonymous term permutation.

Figure 2c illustrates a transformation called “wedging-to-E” which
Lewin uses in his analysis of “Angst und Hoffen,” Schoenberg op. 15, no.
7. The transformation is called wedging-to-E because it moves each note
towards E by the shortest “clockface” distance (reckoning from a clock
whose hours are the pitch classes of the chromatic arranged in a clock-
wise “ascending” sequence). “Wedging-to-E” is a mapping of the type f:
S→S where S is the 12 pitch-classes. The wedging-to-E transformation
is not an operation because in the right column of Figure 2c some ele-
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ments of S appear more than once and some elements appear not at all.
However it is a mapping from a set to itself, so it is correctly termed
“transformation.”

Case 2, f: (S × S)→S. Binary composition. This mapping type
involves Cartesian products. Let S and S′ be sets. The Cartesian product
S × S′ is the set of all ordered pairs (s, s′) such that s is a member of S and
s′ is a member of S′ (GMIT 1). With this definition we can write the
Cartesian product of any two sets. Let S = {C≥, D} and S′ = {E≤, E, F}.
The Cartesian product is the set of all pairs as follows: (S × S′) = {(C≥,
E≤), (C≥, E), (C≥, F), (D, E≤), (D, E), (D, F)}. In these pairs, the order of
elements matters—hence the term “ordered pairs” in the definition. For
example, (C≥, D) is not the same element as (D, C≥). Armed with the
notion of a Cartesian product, we can now consider expressions such as
(C≥, D)→ E. In this expression, the arrow denotes binary composition, a
term whose meaning we consider next.

So far we have informally treated the word “group” as if it denotes
only a set. Actually “group” denotes a two-part entity composed of (1) a
set of group elements and (2) a “law of composition” that tells us what
happens when we multiply one group element with another. Lewin refers
to this law as a binary composition, or BIN. A group is formally defined
as a set G together with a law of composition which is associative and
has an identity element, and such that every element of G has an inverse
(Artin 42). What is meant by “identity,” “inverse,” and “associative” will
be considered later. For now, we focus on “binary composition.”

Specifically, a binary composition is a law that tells us what the

Figure 2. Mapping tables

(a) (b) (c) (d) (e)

f: S→S′ T3 “wedging-to-E” Q3 I4 * T3

C → pp
C≥ → p
D → mp
E≤ → ff
E → ff
F → ff

C → E≤
C≥ → E
D → F
E≤ → F≥
E → G
F → A≤
F≥ → A
G → B≤
A≤ → B
A → C
B≤ → C≥
B → D

C → C≥
C≥ → D
D → E≤
E≤ → E
E → E
F → E
F≥ → F
G → F≥
G≥ → G
A → G≥
B≤ → B≤
B → C

C → D≥
C≥ → A≥
D≥ → F≥
E → C≥
F≥ → A
G → D≥
A → C
A≥ → G

C → E≤ → C≥
C≥ → E → C
D → F → B
E≤ → F≥ → B≤
E → G → A
F → A≤ → A≤
F≥ → A → G
G → B≤ → F≥
A≤ → B → F
A → C → E
B≤ → C≥ → E≤
B → D → D
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answer “c” will be for any expression of the form (a * b). In these expres-
sions the star (*) denotes binary composition. Atonal theory, for exam-
ple, tells us that the result of combining T1 with T1 is T2, which is to say
(T1 * T1)→ T2. Binary composition can describe the course of events in
a piece of music.11 A chord might be (a) transposed, then (b) inverted, and
then (c) transposed again as a piece unfolds. The final state of the chord
would be “a transposed inversion of a transposition,” the result of 
“composing”—in the sense of “putting together”—(a) with (b) with (c).
When the context is clear the symbol denoting binary composition (such
as *, x, or •) is sometimes omitted and replaced with parentheses or with
nothing: a * b = (a)(b) = ab.12

The binary composition for small groups is usually displayed (and
thereby defined) via a group table. A group’s binary composition is com-
pletely determined by its group table. For any pair of group elements the
table will show the result of their combined action. For example, from
Figure 3 we can conclude that T4 * T8 = T0 and that T8 * T8 = T4.

The binary composition of group operations is an instance of the map-
ping type f: (S × S)→ S. The second S is not S′ (as in the definition of a
Cartesian product) because only one set, viz. S, is being referenced. Pre-
cisely, a binary composition on X is a function BIN that maps X × X into
X. We write BIN (x, y) for the value of BIN on the pair (x, y). (GMIT 5.)
Using this definition, in Figure 4 we rewrite the group table in Figure 3.
G = {T0, T4, T8}, and its Cartesian product—the set of all its pairs—has

Figure 3a. A group table Figure 3b. Not a group table

T0 T4 T8

T0 T0 T4 T8

T4 T4 T8 T0

T8 T8 T0 T4

X0 X4 X8

X0 X4 X0 X8

X4 X8 X4 X0

X8 X0 X8 X4

Figure 4. Mapping of the type BIN: (G × G)→G

(T0, T0) → T0

(T0, T4) → T4

(T0, T8) → T8

(T4, T4) → T8

(T4, T8) → T0

(T8, T8) → T4

(T8, T4) → T0

(T4, T0) → T4

(T8, T0) → T8



nine elements: {(T0, T0), (T0, T4), (T0, T8), (T4, T4), (T4, T8), (T8, T8), (T4,
T0), (T8, T0), (T8, T4)}. A group table supplies a convenient way to display
how BIN maps every Cartesian pair from (G × G) onto a single element
in G.

It is a mistake to assume that group elements such as T4 are individual
numerical values and that combining any pair of group elements amounts
to applying ordinary addition, subtraction, or multiplication to values in
accordance with an equation. This misconception creates confusion in
the study of transformations other than the usual pitch-class transposi-
tions and inversions. It should be kept in mind that each element in a
group table is not an isolated value but rather corresponds to a mapping
table.13

Figure 2d illustrates this assertion in an unfamiliar context. It shows
the mapping table for a group element Q3 which acts on the octatonic
space S = {C, C≥, D≥, E, F≥, G, A, A≥}. (Q3 is a member of a group named
“STRANS2” which we will examine later in this article.) The action of
Q3 cannot be summarized via a simple rule of adding or subtracting pc-
numbers. For example, though Q3 sends C “up” three semitones to D≥, it
sends G “down” three semitones to E. To understand Q3 one needs the
entire table and keeping a single value in mind will not suffice.

The multiplying of group elements, then, might be regarded not as a
combining of individual values but rather as a combining of mapping
tables. A procedure of combining tables is illustrated in Figure 2e, which
defines the binary composition of T3-transposition followed by I4-inver-
sion. The action of doing T3 first and I4 second is written algebraically as
“I4 * T3” because according to the convention of left orthography one
performs T/I group operations from right to left. This convention is visi-
ble in the following styles of notation, all of which may be encountered
in the literature. In each, T3 is applied to D first, after which I4 is applied.

I4 * T3: D→ B.

(I4 * T3)(D) = B.

I4(T3(D)) = B.

In music theory this convention is not absolute. Neo-Riemannian opera-
tions furnish a notable exception since they are often performed from left
to right (Cohn 1997, 23). However, since we will later need to combine
T/I with neo-Riemannian operations, we will use left orthography (right
to left performance) for all operations in this paper. In each row of Fig-
ure 2e the first arrow shows the action of T3 and the second arrow shows
the action of I4. The table shows that (I4 * T3) applied to, say, D results in
B. By combining mapping tables in this fashion we can interpret the
action of composite operations.

A binary composition is associative if for group elements a, b, and c,
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(a * b) * c = a * (b * c). Roughly speaking, if you can move parentheses
without changing the result then a binary composition is associative.
Thinking of binary composition as a combining of operation tables
makes it easy to see group multiplication is associative (as stipulated in
the definition of a group). In a row of a combined table whether we chase
a sequence of three arrows as (→→)→ or→ (→→), the arrows’ destina-
tion will be the same.14

Case 3. f: (S × S)→IVLS. The interval function of a GIS. GMIT
describes the interval function as int: (S × S)→IVLS, where S is the space
of a GIS and IVLS is the set of intervals of a GIS. An interval function
may be defined creatively to fit the particulars of a given musical context.

Sentences (7)–(10) illustrate the idea of an interval function in a famil-
iar context.

(7) int: (C≥, D)→ minor second.

(8) (E≤, G)→ major third.

(9) (C, F≥)→ augmented fourth.

(10) (C, C)→ unison.

Sentence (7) reads “the interval function sends the pair (C≥, D) to the
interval of a minor second.”

One must be careful not to confuse (S × S)→IVLS with (S × S)→S.
The former involves two distinct sets (S and IVLS) whereas the latter
involves only the one set S. Habits from arithmetic can lead to the mis-
taken assumption that whatever appears on the right-hand side of an
equation is the same kind of element as whatever appears on the left (as
is the case in expressions such as 2 + 4 = 6). Sentences (11)–(14) are
examples from existing theory in which (S × S)→IVLS might be con-
fused with (S × S)→S.15 In each, the map is (S × S)→S′, despite the
resemblance between the entities on both sides of the equal sign. Though
it appears that the “4” on both sides of the equation in (11) is the same
kind of entity, the “4” on the right-hand side is from IVLS whereas the
“4” on the left hand side is from S. Similarly, in (12) at first glance it
might appear that (8, 8) is the same kind of entity as (1, 4), and in (13)
that (1011) is the same kind of entity as (0100). Aware of the potential for
confusion, Lewin notates (13) as (14) (introducing the symbols “@” and
“< >”) to prevent the confusion of S with S′.

(11) int(0, 4) = 4. (set of pitch-classes→ group of intervals).

(12) int((1, 4), (9, 12)) = (8, 8). (Durations→ intervals). 

(13) int((0100), (1111)) = (1011). (musical states to musical transfor-
mations).

(14) int((@0100), (@1111)) = <1011>.
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Sentences (11)–(14) also illustrate that an interval function is not limited
to the familiar intervallic context of (7)–(10) but may be applied to any
kind of musical space.

III. Musical Intuitions and Group Structure.

For a set of operations to be a group, associativity (already discussed),
identity, closure, and inverse conditions must be satisfied (GMIT 3–6). In
music analysis, the inverse condition insures that if you move from one
point to another in a musical space you will have a way to get back to the
original point. Since music involves moving towards goals as well as
moving away from starting points, it is intuitively desirable to have a sys-
tem that allows you to treat any musical object as either a beginning or
an ending. For example, if one moves from C to G, one would like to have
a way to return to C.

To find the inverse of a particular operation, reverse the direction of
arrows in the operation’s mapping table. The table for T4 in Figure 5a is
followed in 5b by the table for T4’s inverse. Notice that this inverse sends
E to C, F to C≥, and so forth. As can be confirmed by comparing Figures
5b and c, the inverse of T4 is the operation T8. The inverse condition
requires that the inverse of each group element must be in the group, so
any group containing T4 must also contain T8, T4’s inverse.

If you multiply any operation by its inverse, the result is you “go
nowhere” (Figure 5d). For example, the net result of (T8 * T4) is that C
gets sent to C, C≥ to C≥, and so forth. The operation that fixes each point
without sending anything anywhere is termed the identity and is desig-

Figure 5. Inverse and identity operations

(a) (b) (c) (d) (e)

T4 T4’s inverse T8 T8 * T4 T0

C → E
C≥ → F
D → F≥
E≤ → G
E → A≤
F → A
F≥ → B≤
G → B
A≤ → C
A → C≥
B≤ → D
B → E≤

C ← E
C≥ ← F
D ← F≥
E≤ ← G
E ← A≤
F ← A
F≥ ← B≤
G ← B
A≤← C
A ← C≥
B≤ ← D
B ← E≤

E → C
F → C≥
F≥ → D
G → E≤
A≤ → E
A → F
B≤ → F≥
B → G
C → A≤
C≥ → A
D → B≤
E≤ → B

C → E → C
C≥ → F → C≥
D → F≥ → D
E≤ → G → E≤
E → A≤ → E
F → A → F
F≥ → B≤ → F≥
G → B → G
A≤ → C → A≤
A → C≥ → A
B≤ → D → B≤
B → E≤ → B

C → C
C≥ → C≥
D → D
E≤ → E≤
E → E
F → F
F≥ → F≥
G → G
A≤→ A≤
A → A
B≤ → B≤
B → B



nated by convention as “e.” The identity condition requires that a group
contain the identity element. In the T/I group, the identity element is usu-
ally labeled T0 (Figure 5e).

The closure condition requires the result of multiplying any two group
elements to be an element of the group. This condition is not automati-
cally fulfilled by any set of operations. For example, consider the set of
operations X = {T0, T3, T9, T1, T11}. Here the identity element is included,
T0. The inverse of every element is also included: the inverse of T0 is T0,
the inverse of T3 is T9 (and vice versa), and the inverse of T1 is T11 (and
vice versa). So X satisfies two conditions of a group structure. However,
consider what happens when we multiply T1 by T3. The result is T4, an
operation that is not included in the set X. The product of two elements
has produced an element that is not in the parent set, viz. X, so the set of
operations does not satisfy the closure condition and is therefore not a
group of operations.

What musical intuition is engaged by the closure condition? Once we
recognize that a piece uses a particular musical motion, it is intuitively
attractive to consider all pathways that motion makes available. For exam-
ple, the motion of “modulating by major third upwards” includes the pos-
sibility of moving not only from C major to E major, but via double motion
from C major to G≥ major. A composer may not use all available path-
ways but rather may select only a few. On the other hand, a composer may
in the course of a work systematically realize all the possibilities made
available by a move seen early on. Understanding the possibilities of a
given motion enhances music appreciation: if one knows all the roads that
are not taken, one can better appreciate the roads that are.

To see if a set of interesting operations forms a group one needs to ver-
ify that all group conditions are satisfied. Cayley’s observation gives us
a trick that can be used to exclude non-groups from consideration if the
number of operations is not large. Cayley observed a table for a group
will display each element of the group exactly once in each column and
each row. An occurrence of the identity in the body of a group table will
correspond to the multiplication of an element with its inverse, and an
occurrence of a caption of a row or column within the body of the same
row or column corresponds to a multiplication by the identity. The ab-
sence of foreign entries demonstrate closure. Figure 3a supplies an illus-
tration. The occurrence of T0 in the table’s second row, third column cor-
responds to the multiplication of T8 with its inverse, T4; the occurrence of
the caption of row three—namely T8—in the table’s first column, third
row, indicates multiplication by the identity (T0). Although Cayley’s
observation gives us a shortcut means for identifying non-groups, a dis-
claimer is in order: while any group table necessarily satisfies Cayley’s
observation, a table that satisfies Cayley’s observation is not necessarily
a group table. In Figure 3b, for example, while each element appears
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exactly once in each column and once in each row, there is no identity
element so {X0, X4, X8} is not a group.

The next section uses the preceding information on group tables and
interval functions to illustrate generalized interval systems and STRANS
systems, which correspond to Lewin’s Cartesian and transformational
perspectives respectively.

IV. A Cartesian Perspective.

A central point of GMIT is that the GIS and STRANS perspectives
(despite differing philosophical emphases) are at bottom equivalent for-
mulations. Formally, this means that any STRANS system will have a
particular GIS that matches it and vice versa. It also means if a system is
not simply transitive—say, the T/I group of atonal theory acting on pitch
classes—it cannot support a GIS.

To demonstrate the underlying sameness of the GIS and STRANS
perspectives, this section will derive a GIS system, GIS1, from a particu-
lar STRANS system, STRANS1. (“STRANS” and “GIS” are general
terms, “STRANS1” and “GIS1” are specific terms.) This derivation will
make tangible the definition of a GIS.

Figures 6 and 7 show the mapping and group tables for the STRANS1

system (GMIT 251). Recall that an STRANS system requires an S and a
G. Here S = {C, C≥, D≥, E, F≥, G, A, A≥}, and G = {R0, R3, R6, R9, K, L,
M, N}. An STRANS system also requires fulfillment of the simply tran-
sitivity condition (Definition 1). It can be verified that this condition if
fulfilled by STRANS1; for instance, R3 is the unique operation that sends
D≥ to F≥, and K is the unique operation that sends E to A.16

Using Definition 2 as a guide, our agenda now is to translate the
STRANS1 system into the GIS1 that matches it. In order to accomplish
this translation, we need to spend some time with the definition of a GIS
(Definition 2 below). The first part of the definition combines items con-
sidered earlier: a musical space, a mathematical group, and an interval
function. Added to these in the second part of the definition are two
conditions.

Definition 2. A Generalized Interval System (GIS) is an ordered triple
(S, IVLS, int), where S, the space of the GIS is a family of elements,
IVLS, the group of intervals for the GIS, is a mathematical group, and
int is a function mapping S × S into IVLS, all subject to the two con-
ditions (A) and (B) following:

(A): For all r, s, and t in S, int(r, s) * int(s, t) = int(r, t).

(B): For every s in S and every i in IVLS, there is a unique t in S which
lies the interval i from s, that is a unique t which satisfies the equation
int(s, t) = i. (GMIT 26).
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Comparing the requirements of each system reveals similarities. Both
systems require a group and a space as specified in the first two rows of
Figure 8. But a GIS involves an additional entity, the interval function,
int, and a Condition A which asks that intervals combine in a particular
way. The interval function is the third entity “int” in (S, IVLS, int), the
ordered triple of Definition 2.

Condition A conforms to our intuitions about combining intervals, as
shown in Figure 9. It states essentially this: Given the configuration in

Figure 7. Group table for STRANS1 (= SIMP)

R0 R9 R6 R3 K L M N
R0 R0 R9 R6 R3 K L M N
R3 R3 R0 R9 R6 N K L M
R6 R6 R3 R0 R9 M N K L
R9 R9 R6 R3 R0 L M N K
K K N M L R0 R3 R6 R9

L L K N M R9 R0 R3 R6

M M L K N R6 R9 R0 R3

N N M L K R3 R6 R9 R0

Figure 8. Requirements of STRANS and GIS systems

STRANS GIS

1. A group STRANS.

2. A space S.

3. The action of the group on
the space must be simply
transitive.

1. A group IVLS.

2. A space S.

3. For every s in S and every i in
IVLS, there is a unique t which lies
the interval i from s.
(GMIT 26, Condition B). 

4. An interval function (designated
"int") which maps each ordered
pair of objects from the space into
an element of the group IVLS.

5. Group multiplication in IVLS
satisfies the equation
int(s, t) * int(t ,u) = int(s, u). 
GMIT 26, Condition A.)
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Figure 9, if we compose the interval s-to-t with the interval t-to-u, the
resultant compound interval will be s-to-u, the interval of the large arc
that results from composing the two smaller arcs. The intuition captured
by this spatial metaphor is so obvious as perhaps to make the metaphor
dispensable when thinking of usual situations such as combining a minor
third with a perfect fifth. However, visualizing s, t, and u in this way
becomes something useful to grab onto when working with the general
idea of interval as a move of any kind in a musical space of any kind.

Algebraically, Condition A amounts to a definition of the binary com-
position of the group of intervals, IVLS. Recall that we defined a group
as a set together with a binary composition. The common dictionary
meaning of “compose” is “to form by putting together.” This sense is
engaged by Condition A. The question “what is the binary composition
of the group IVLS” can be restated as “how does one put together the
intervals of IVLS?” The composition of intervals is just what “int(s, t) *
int(t, u) = int(s, u)” describes.

We now begin deriving our GIS1 from STRANS1 by interrelating
intervals in GIS1 with operations in STRANS1. GIS1 will have eight
intervals, which we label in Figure 10a with letters g, h, i, j, k, l, m, and
n. (Why only eight intervals are needed will be explained later.) The table
shown for GIS1’s interval function is not complete; a complete table
would have an entry for each of the 64 possible pairs from S. Though
incomplete, this table will suffice for the purposes at hand.

Next consider the second entry of Figure 10a: int(C, D≥) = h. Using
our technique of noun-to-verb paraphrase, we can restate (15) as (16):

(15) “The distance from C to D≥ is the interval h.”

(16) “if we h-transpose C we arrive at D≥.”
Paraphrasing in this way gives us the entry of the second column, second
row, in which the second pitch is described as a transposition by h. The
rest of the second column is similarly derived.17 The basic idea behind
translating an STRANS into a GIS system is captured by the substitution
in Figure 10c: The elements of an STRANS group are transpositions by
intervals of the corresponding GIS. In STRANS1, then, transposition by
the GIS1 interval g is the operation R0, transposition by the GIS1 interval

Figure 9. Condition A of a GIS

int(t,u)

int(s,u)

int(s,t)
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h is R3, and so forth. The legend in Figure 10d summarizes the equiva-
lences between STRANS1 operations and transpositions in GIS1. In ret-
rospect, we can see why there are only eight intervals in the GIS we are
seeking. In any GIS the number of intervals will be the same as the num-
ber of ways to transpose.

We seem to have the GIS1 we want. We have the three components the
definition of a GIS requires: a space S, a group of intervals IVLS = {g, h,
i, j, k, l, m, n}, and an interval function int. But before we can conclude
GIS1 is a generalized interval system, we need to verify that it satisfies
conditions A and B of Figure 8.

Does the interval function of GIS1 fulfill condition A, the requirement
that intervals combine in an intuitively natural fashion as diagrammed in
Figure 9? Let us explore this question by testing Condition A with the
example shown in (17). Condition A tells us that (17) should be true. Using
the legend from Figure 10 we can incorporate the letters for intervals. Sen-
tence (20) rewrites (17) using the interval names in (18) and (19).

(17) int(D≥, A) * int(A, E) = int(D≥, E) = m.

(18) int(D≥, A) = i

(19) int(A, E) = k.

(20) i * k = m.

(21) Tk(Ti(s)) = Tm(s).

(22) (K * R6)(s) = M(s).

To see if condition A is satisfied, we must show that (20), a rewriting of
(17), is actually true. (20) says that if you k-transpose the i-transpose of

Figure 10. GIS intervals and STRANS operations

(a) (b) (c) (d)

Renaming
GIS1’s Renaming transpositions
interval pitches as as operations 
function transpositions from STRANS1 Legend
int (C, C) = g = int (C, Tg(C)) = int (C, R0(C)) Tg = R0

int (C, D≥) = h = int (C, Th(C)) = int (C, R3(C)) Th = R3

int (C, F≥) = i = int (C, Ti(C)) = int (C, R6(C)) Ti = R6

int (C, A) = j = int (C, Tj(C)) = int (C, R9(C)) Tj = R9

int (C, C≥) = k = int (C, Tk(C)) = int (C, K(C)) Tk = K
int (C, E) = l = int (C, TI (C)) = int (C, L(C)) Tl = L
int (C, G) = m = int (C, Tm(C)) = int (C, M(C)) Tm = M
int (C, A≥) = n = int (C, Tn(C)) = int (C, N(C)) Tn = N
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any note in S, say D≥, you should get the m-transpose (Figure 11). In
other words, it says (21).

But since (per Figure 10d) we know that Ti = R6, and Tk = K, sentence
(21) can be rewritten as (22). And we know that (22) is true from the
group table of STRANS1 (Figure 7). Since we know (22) is true, we
know that (17) is true. So in (17)–(22) we have shown condition A to be
satisfied. Using this kind of reasoning, we can verify in general that con-
dition A is satisfied by GIS1.

Is Condition B satisfied by GIS1? Condition B asks that for every s in
S and every i in IVLS, there is a unique t in S which lies the interval i
from s—that is, a unique t which satisfies the equation int(s, t) = i. To test
Condition B, we need to start with an s in S and an i in IVLS, so we select
D≥ from S and k from IVLS. We can write the question Condition B asks
of the test case as (23).

(23) “what t is the interval k from D≥, and is this t unique?” (int(D≥, t)
= k).

Taking advantage of our technique of noun-verb paraphrase (p. 102), we
rewrite (23) as (24):

(24) “if we k-transpose D≥, what t results, and is this t unique?”
(Tk(D≥) = t).

As the definition of GIS transposition implies, for any s, t in S and any
k in IVLS, int(s, t) = k if and only if Tk(s) = t. So we can answer the ques-
tion in (23) by considering (24). Because STRANS1 is simply transitive,
Tk is the only transposition that sends D≥ to A≥ (Figure 6). Also Tk does
not send D≥ to any note other than A≥ by the uniqueness requirement of
a mapping. So in this case A≥ is the unique t we seek and Condition B of
a GIS is satisfied. Through this reasoning it can be shown that STRANS1

in general satisfies Condition B.
We have translated STRANS1 into GIS1 by defining an int function for

GIS1 and by using the relationships in STRANS1’s mapping and group
tables to show that conditions A and B of a GIS are satisfied. In the sense

Figure 11

k

m

i

s = D≥ Ti(s) = A Tk(Ti(s)) = Tm(s) = E



that we can translate STRANS1 into GIS1, STRANS1 and GIS1 are equiv-
alent systems. However, they have differing conceptual emphases.

The conceptual relationship between STRANS1 and GIS1 can be
explored through noun-to-verb paraphrase.

(25) (g, s)→ t.

(26) (s, t)→ i.

(27) (s, t)→ g.

Sentence (25) models the situation of a dynamic performer in a particu-
lar musical state s who chooses action g to arrive at t. In other words, the
outcome of the pair (g, s) will be the transformed musical state, t. In con-
trast, (26) models the situation of a static observer. Before the observer’s
eyes are two points in musical space, s and t. The observer evaluates the
pair (s, t) and notes the distance between them as i.

The difference between the subject-oriented and observer-oriented
accounts dissolves if one invokes Lewin’s generalized conception of
interval. This vanishing of difference can be illustrated by rewriting (26)
as (27). In (27) the letter g substitutes for i. Our generalized conception
of interval permits us to make this substitution, because we understand
that the distance-word “interval” (denoted by “i”) in the GIS formulation
can also stand for the transformation-word “group element” (denoted by
“g”) in the STRANS formulation. With this substitution, we see directly
that the GIS and the simply transitive formulations both associate a given
s and g with a particular element t.

We tend to imagine ourselves in the position of observers when we theo-
rize about musical space; the space is ‘out there’, away from our dancing
bodies or singing voices. ‘The interval from s to t’ is thereby conceived as
modeling a relation of extension, observed in that space external to our-
selves; we ‘see’ it out there just as we see distances between holes in a
flute, or points along a stretched string. . . .

In contrast, the transformational attitude is much less Cartesian. Given
locations s and t in our space, this attitude does not ask for some observed
measure of extension between reified ‘points’; rather it asks: ‘If I am at s
and wish to get to t, what characteristic gesture (e.g. member of STRANS)
should I perform in order to arrive there?’The question generalizes in sev-
eral important respects: ‘If I want to change Gestalt 1 into Gestalt 2 (as
regards to content, or location, or anything else), what sorts of admissible
transformations in my space (members of STRANS or otherwise) will do
the best job?’ Perhaps none will work completely, but ‘if only . . . ,’ etc.
This attitude is by and large the attitude of someone inside the music, as
idealized dancer and/or singer. No external observer (analyst/listener) is
needed. (GMIT 158–59.)
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V. Atonal and Neo-Riemannian Systems.

The close study of the definition of a GIS gives a precise understand-
ing of the transformational/Cartesian dichotomy central to Lewin’s
thought. In this section we will reap further dividends from this study as
we evaluate the relationship between STRANS systems and two other
kinds of system commonly encountered in the literature, neo-Riemann-
ian systems that use parallel, leading-tone-exchange, and relative opera-
tions, and atonal systems that use pitch-class transpositions and inver-
sions.18

The neo-Riemannian L/R group, the atonal T/I group, and the group
of symmetries of the dodecagon all have the same structure.19 Before
demonstrating this claim we will briefly review each group. The neo-Rie-
mannian L/R group is also called the PLR group because neo-Riemann-
ian theory studies the three operations: P (Parallel), L (Leading-tone
Exchange), and R (Relative). P sends a triad to its parallel, for instance,
C major to C minor, or C minor to C major. Notice that C minor and C
major both contain a common perfect fifth, C-G. Accordingly, we may
say that P connects the two consonant triads that have a common perfect
fifth. Similarly, L sends to the triad with a common minor third (e.g., C
major to E minor), and R sends to the triad with a common major third
(e.g., C major to A minor). The mapping tables for L and R are shown in
Figure 12.

When it comes to finding generating elements20 of the group, P can be
set aside since all elements of the group can be expressed in terms of L
and R. Specifically, P = R*L*R*L*R*L*R. By taking RL = R * L, we
can rewrite the preceding equation as

P = RL * RL * RL * R.

Under left orthography, with the composite operation RL we perform L
first and R second. Thinking in terms of RL will come in handy later as
we formulate a brief definition of the neo-Riemannian L/R group. We can
check this equation by applying (RL * RL * RL * R) to a specific major
chord and see if P, the parallel triad, is the result.

RL * RL * RL * R (C+) = RL * RL * RL (A-) = RL * RL (D-) = RL
(G-) = (C-).

The parallel minor chord, (C,-) is the result, and it can be verified in gen-
eral that P = (RL * RL * RL * R). Because P can be set aside, the neo-
Riemannian PLR group is perhaps better named the L/R group in direct
analogy to the T/I group which also can be generated from just two ele-
ments (e.g., T5 and I).21

The group of symmetries of the dodecagon include the transforma-
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tions which rotate or “flip over” the dodecagon in such a manner that its
position in space remains fixed. It is commonly referred to as “D12,”
where D stands for “dihedral.”22 Generating operations are σ (a rotation
by 1/12 of a turn, by “one hour” on a clockface), and τ (a flipping over of
the dodecagon in place such that its back becomes its front).

Since we will be deriving the L/R and dodecagon group from the T/I
group, let us first check that T/I is indeed a group. T/I satisfies the closure
condition because the product of transpositions and inversions will
always be some transposition or an inversion. It satisfies the inverse con-
dition because every element’s inverse is in the group. For instance, the
inverse of I2 is I2, and the inverse of T10 is T2. It satisfies the identity con-
dition because T0 is the identity element and T0 is in the group.

Two finite groups have the same structure—are isomorphic—if under

Figure 12. Comparison of T/I with L/R permutations

(a) (b) (c) (d)

L R RL I11

C → e
c → A≤
D≤ → f
c≥ → A
D → f≥
d → B≤
E≤ → g
d≥ → B
E → g≥
e → C
F → a
f → D≤
F≥ → a≥
f≥ → D
G → b
g → E≤
A≤ → c
g≥ → E
A → c≥
a → F
B≤ → d
a≥ → F≥
B → e≤
b → G

C → a
c → E≤
D≤ → b≤
c≥ → E
D → b
d → F
E≤ → c
d≥ → F≥
E → c≥
e → G
F → d
f → A≤
F≥ → d≥
f≥ → A
G → e
g → B≤
A≤ → f
g≥ → B
A → f≥
a → C
B≤ → g
a≥ → C≥
B → g≥
b → D

C → G
c → f
D≤ → A≤
c≥ → f≥
D → A
d → g
E≤ → B≤
d≥ → g≥
E → B
e → a
F → C
f → b≤
F≥ → C≥
f≥ → b
G → D
g → c
A≤ → E≤
g≥ → c≥
A → E
a → d
B≤ → F
a≥ → d≥
B → F≥
b → e

C → e
c → E
D≤ → e≤
c≥ → E≤
D → d
d → D
E≤ → c≥
d≥ → C≥
E → c
e → C
F → b
f → B
F≥ → b≤
f≥ → B≤
G → a
g → A
A≤ → a≤
g≥ → G≥
A → g
a → G
B≤ → f≥
a≥ → F≥
B → f
b → F
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some relabeling rule their group tables are identical.23 Under the follow-
ing relabeling procedure, the group table for T/I will become the group
table for the symmetries of the dodecagon. Starting with a T/I group
table, relabel T1 as σ and I0 as τ, Continue by relabeling elements other
than T1 and I0 in the T/I table as compounds of σ and τ. For example, I2

= (T1 * T1 * I0) would be relabeled as (σ * σ * τ) = σ2τ. To arrive at the
neo-Riemannian L/R group from the dodecagon group, relabel σ as RL
and τ as L.

In this way we can use group tables to prove the T/I, L/R, and
dodecagon groups have a common structure. Since these group tables are
enormous (576 entries in each), we may not want to write the tables in
their entirety but would prefer instead to imagine how they can be made
equivalent. A shortcut around writing the full tables is to see if the defin-
ing relations of the involved groups match under the relabeling.24 To
define a group in briefest terms, one chooses a small number of elements
from the group and specifies how they combine to produce the identity
element. If this is done strategically, all relationships in the group can be
inferred from these few items of information. Briefly defining in this way
is known as giving the defining relations of a group. The T/I group has
three defining relations on its generators, T1 and I0, as shown in the first
column of Figure 13. As shown in the second and third columns, the
defining relations are preserved in D12 and L/R under our relabeling of T1

as RL as σ, and I0 as L as τ.
Figure 13 is somewhat abstract. To directly illustrate the procedure of

relabeling we can work with small subgroups.25 The top of Figure 14
shows the T/I subgroup {T0, T6, I, T6I}. Below it are the corresponding
tables for subgroups of L/R and D12. Comparing captions shows the rela-
beling used. Since their tables can be made equivalent via a relabeling
rule, these subgroups are isomorphic to one another.

One might question the choice of RL as the new label for T1 since T1

and RL do not transform triads in the same way. T1(C,E,G) = (C≥,E≥,G≥),
whereas RL(C,+) = (G,+). T1(C,E≤,G) = (C≥,E,G≥), whereas RL(C,–) =
(F,–). We see here that the action of corresponding group elements on tri-
ads is not the same. Indeed, nothing in T/I will act like RL since RL sends
major and minor triads in opposite directions (as shown in Figure 12c).
However, to raise this question is to confuse the realm of verb-elements

Figure 13. Defining relations

T/I D12 L/R
T12 = T0 = e σ12 = e (RL)12 = e
I2 = T0 = e τ2 = e L2 = e
T*I*T*I = T0 = e σ*τ*σ*τ = e RL*L*RL*L = e
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(elements of G) with the realm of noun-elements (elements of S). Group
isomorphisms take into account only the relation of transformations
(verb-elements) to one another and are indifferent to choice of musical
space (noun-elements).26 If we focus on the binary composition of verb-
elements—and put out of our mind for the time being the mapping tables
of T1 and RL—the relabeling works perfectly. For instance, in Figure 14,
wherever T6 appears in the upper table, (RL)6 or σ6 appears in a corre-
sponding position in a lower table.

To explore the difference in the actions of the T/I and L/R groups on
triads, we first need to clarify the relationship of their respective spaces.
It is easy to think in error that the T/I atonal system and L/R neo-Rie-
mannian system both involve the same space. But this is not so: the T/I
space contains trichords (e.g., {C, E, G}) whereas the L/R space contains
signed triads (e.g., (C, +)). This is not merely a labeling but a philosoph-
ical difference with theoretical and analytical implications. The T/I sys-
tem construes triads as a composite entity constructed by combining
pitch classes whereas the L/R system regards consonant triads (“Klangs”
in Lewin’s terminology) as fused entities (GMIT 175–76).

Figure 14. Isomorphic subgroups

Subgroup of T/I.

T0 T6 I T6I
T0 T0 T6 I T6I
T6 T6 T0 T6I I
I I T6I T0 T6

T6I T6I I T6 T0

Subgroup of L/R.

e (RL)6 L (RL)6*L
e e (RL)6 L (RL)6*L
(RL)6 (RL)6 e (RL)6 * L L
L L (RL)6*L e (RL)6

(RL)6*L (RL)6*L L (RL)6 e

Subgroup of D12.

e σ6 τ σ6τ
e e σ6 τ σ6τ
σ6 σ6 e σ6τ τ
τ τ σ6τ e σ6

σ6τ σ6τ τ σ6 e
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To compare systems we need an L/R kind of group that acts on tri-
chords just as T/I does. To make such a group—say L′/R′—take the space
S of consonant-triad trichords such as {C, E, G}. Then invent the group
G = L′/R′ with the same group table as the L/R group, except with prime
marks appended to each entry (hence L/R is isomorphic to L′/R′). Write
the mapping table for each operation in the L′/R′ group by rewriting the
corresponding entry in L/R, showing each trichord in the form of {C, E,
G} or {D, F, A}, in place of each corresponding triad in the form of (C,+)
or (D,-).

We will make reference to this L′/R′ group to show how the T/I and
L/R groups (though isomorphic to one another) beget distinct systems.
One sometimes hears the mistaken observation that the atonal and neo-
Riemannian systems are essentially equivalent—and the fact that the T/I
and L/R group are isomorphic to one another may reinforce this miscon-
ception. A look at specific mapping tables shows that the T/I and L/R sys-
tems are unlike. As shown in Figure 12a, L, sends C to E minor, C minor
to A≤ major, and so forth. Is there an operation from the isomorphic
group, T/I, that acts like L? Since I11 is the unique element in T/I which
matches the first row of L’s action table, it is the only candidate in T/I
which might match L. However, as shown in Figure 12d, I11 does not
send C minor to A≤ major and differs from L in other rows as well.
Indeed, there is no operation in T/I that permutes triads exactly as L does.

The general situation is illustrated in Figure 15. The large circle in-
cludes all the permutations of the 24 consonant triads. Each smaller cir-
cle contains the 24 operations of each group as labeled, the L′/R′ group
on one hand and the T/I group on the other. Each operation within a
smaller circle corresponds to a single mapping table, such as the table for,
say, L′ or I6. As shown, the only intersection between the T/I and L′/R′
circles is the identity element and T6 (= RL6). The point is this: though
the T/I and L′/R′ groups are isomorphic, their group actions on the 24
consonant triads engage distinct sets of permutations. The same holds
mutatis mutandis for T/I and L/R. However, despite this difference in
their actions, the idea of an isomorphic relationship between them is nice

Figure 15. T/I and L′/R′ embedded in permutations
of the 24 consonant triads

All permutations of consonant triads

e T6/(R'L')6L'/R' T/I



to have since the T/I and L/R systems are analogous in musically signif-
icant ways.27 Also, as will be next discussed, T/I is the dual of L/R and
vice versa, an astonishing fact, perhaps, given the different historical ori-
gin of each system.

The foregoing illustrates that groups in transformational theory permit
the study of verb-elements (G) as an independent realm, not necessarily
in the context of a given set of noun-elements (S). This independence
opens the door to more analytical possibilities since it allows one to apply
a given group structure to different musical spaces and vice versa. A
given group may form a GIS or not, depending on how it is wedded to a
space. As the test examples in Figure 16 illustrate, the L/R (and L′/R′)
and the T/I group acting on triads are simply transitive (Figure 16a-c), but
the T/I group acting on pitch classes is not simply transitive and therefore
cannot form a GIS or STRANS system (Figure 16d).

VI. Non-commutative Generalized Interval Systems.

The non-commutative GIS is certainly of the most interesting ideas in
Lewin’s work. Among other things, his work on non-commutative GIS
reveals the existence of paired systems of transformations. With this
work, we know that if we undertake analysis of a particular space with a
GIS that is not commutative, there necessarily is a second GIS, out there
somewhere, that forms a natural pair with the original GIS. The opera-
tions of this second GIS will apply to the space of the original GIS and
can be combined with the operations of the original GIS to produce a
larger, composite analytical system. This section works through these
ideas by first sketching the theory and then offering illustrations of two
non-commutative GIS systems. The first system uses a space of octatonic
pitch-classes, the other a space of consonant triads. Examples from the
paired system which corresponds to each of these two systems will also
be given.

A GIS is non-commutative if there are two intervals i and j from its
group IVLS such that i*j≠ j*i. In atonal theory, non-commutativity is a
familiar idea since in the T/I group transpositions do not always commute
with inversions. For instance T4*I6≠ I6*T4. However, in GIS theory the
expression i*j≠ j*i takes on an unfamiliar connotation, one which we will
explore in a discussion of Figure 17.

In our usual system of intervals, two intervals i and j “add up” to the
same compound interval (i * j) regardless of the order in which the inter-
vals are taken. In Figure 17a, for instance, a minor seventh results both
ways. This conforms to a distance metaphor: the distance spanned by two
lengths is additive and therefore not affected by the order in which the
lengths are added. In contrast, order matters in a non-commutative GIS,
as shown in Figure 17b. Even though we are familiar with non-commutative

123



124

Fi
gu

re
16

.C
om

pa
ri

so
n

of
T

/I
an

d
L

/R
sy

st
em

s

(a
)

(b
)

(c
)

(d
)

G
=

T
/I

gr
ou

p.
G

=
L

/R
gr

ou
p.

G
=

L
′/R

′g
ro

up
.

G
=

T
/I

gr
ou

p.

S
=

{t
he

24
co

ns
on

an
t

tr
ia

ds
in

th
e

fo
rm

of
pi

tc
h-

cl
as

s
su

bs
et

s}
.

s
=

{C
,E

,G
}.

t=
{B

,D
,F

≥}
.

I 6
(s

)
=

t.

Is
an

ST
R

A
N

S
sy

st
em

.

S
=

{C
+

,C
-,

D
≤+

,D
≤-

,
D

+
,D

-,
E

≤+
,E

b-
,E

+
,

E
-,

F+
,F

-,
F≥

+
,F

≥-
,G

+
,

G
-,

A
≤+

,A
≤-

,A
+

,A
-,

B
≤+

,B
≤-

,B
+

,B
-}

.

s
=

C
+

t=
B

-

L
R

L
(s

)
=

t.

Is
an

ST
R

A
N

S
sy

st
em

.

S
=

{t
he

24
co

ns
on

an
t

tr
ia

ds
in

th
e

fo
rm

of
pi

tc
h-

cl
as

s
su

bs
et

s}
.

s
=

{C
,E

,G
}.

t=
{B

,D
,F

≥}
.

L
′R

′L
′(s

)
=

t.

Is
an

ST
R

A
N

S
sy

st
em

.

S
=

{0
,1

,2
,3

,4
,5

,6
,7

,8
,

9,
10

,1
1}

.

s
=

C
.

t=
E

≤.

T
3(

s)
=

I 3
(s

)
=

t.

O
P(

s)
=

ti
s

tr
ue

fo
r

bo
th

O
P

=
T

3
an

d
O

P
=

I 3
.

Is
no

ta
n

ST
R

A
N

S
sy

st
em

.



125

operations such as T4 and I6, the situation in Figure 17b seems unfamil-
iar because we normally do not think of T4 and I6 as intervals in an inter-
val system. (Indeed, since the T/I group acting on pitch classes is not
simply transitive, it is literally not an interval system.)

Non-commutative GISs have other features not shared by our usual
system of intervals, two of which we will consider: (1) In any non-com-
mutative GIS, not all transpositions will preserve intervals, and not all
interval-preserving operations are transpositions. (2) For any non-com-
mutative STRANS system there is a corresponding dual group—a sec-
ond system—which is composed of just the interval-preserving opera-
tions. (“Dual” and “interval-preserving” will be defined shortly.)

In the familiar intervallic context we say C to G is a perfect fifth. If we
transpose both C and G upwards by a minor third, we get E≤ and B≤,
which also form a perfect fifth. We might say “the interval from C to G
is the same as the interval from the T3-transpose of C to the T3-transpose
of G.” Paraphrasing this algebraically gives us (28). T3 is an operation
which preserves the interval of a perfect fifth: it is interval preserving. To
make a general statement, we can rewrite (28) as (29). Sentence (29)
reads “the interval from s to t is the same as the interval from the q-trans-
pose of s to the q-transpose of t,” where q is an interval in a GIS.

(28) int(C, G) = int(T3(C), T3(G)) = perfect fifth.

(29) int(s, t) = int(Tq(s), Tq(t)).

In a GIS if Tq (transposition-by-interval-q) satisfies the equality in (29)
for any s and t in our musical space and some q in IVLS, then we say that
Tq is an interval-preserving operation. As our C-G to E≤-B≤ example
above suggests, the twelve usual transpositions are interval-preserving
operations.

Figure 17

j

i*j = k

i
i

j*i = m ( k ≠ m )

j

P5

m7

m3 m5

m7

P3

(a)
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Now, imagine a musical system in which a transposition does not pre-
serve musical intervals, and further, in which there exist interval-pre-
serving operations that are not transpositions. That would be an unusual
system indeed! Unusual as it may be, this is exactly the situation we face
whenever we are working with a non-commutative GIS. Sentences (30)
and (31) illustrate.

(30) int(C, D≥) = int(C, Th(C)) = h.

(31) int(Tl(C), Tl (D≥)) = int(L(C), L(D≥)) = int(E, C≥) = int(E, Tj(E))
= j.

We arrive at (30) by consulting the mapping table for STRANS1 (Figure
18) keeping in mind that Th = R3, as shown in Figure 10, column d. Sen-
tence (31) shows what results if we transpose both C and D≥ by the inter-
val l. (We are now speaking of transposition in GIS1, which is not our
usual type of transposition.) After l-transposing both C and D≥, the result
is j. Before transposition, the interval is h, but after transposition the
interval is j. We conclude Tl (transposition-by-interval-l) is not an inter-
val preserving operation.

In the familiar system of intervals, transpositions are the interval-pre-
serving operations. Sentences (30) and (31) illustrate there exist systems
in which transpositions are not interval-preserving operations. This
raises the question: are there operations, other than transpositions, that
are interval preserving for STRANS1? The answer is yes, and the opera-
tion Q3 discussed earlier turns out to be one of them (Figure 18). The
operation Q3 takes the diminished seventh C-D≥-F≥-A and arpeggiates
each of its notes “upwards.” C goes to D≥, D≥ goes to F≥, F≥ goes to A,
and A goes to C. But Q3 takes the diminished seventh C≥-E-G-A≥ “down-
wards.” C≥ goes to A≥, E goes to C≥, G goes to E, and A≥ goes to G. Recall
that the mapping table of an operation will exhibit each of the space’s
elements once on the sending side of the arrows and once on the receiv-
ing side. This is the case with the mapping table for Q3 (Figure 19). So,
though its action is odd, Q3 is indeed an operation on the octatonic space
of STRANS1, S = {C, C≥, D≥, E, F≥, G, A, A≥}.

(32) int(C, D≥) = int(C, Th(C)) = h.

(33) int(Q3(C), Q3(D≥)) = int(D≥, F≥) = int(D≥, Th(D≥)) = h.

(34) int(C, A≥) = int(C, Tn(C)) = n.

(35) int(Q3(C), Q3(A≥)) = int(D≥, G) = int(D≥, Tn(D≥)) = n.

Sentences (32) and (33) test if Q3 preserves intervals by working out the
example of (30) and (31) with Q3 instead of Tl. The answer is h in both
(32) and (33) so in this instance Q3 preserves intervals. Sentences (34)
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and (35) try another example and again Q3 preserves intervals. It can be
verified that Q3 is an interval-preserving operation for STRANS1.

STRANS2 (Figure 19) consists of all the interval-preserving opera-
tions for STRANS1. Where do these interval-preserving operations come
from? They were not in STRANS1. And how do we know we have all of
them? To pursue these questions we need the idea of commuting ele-
ments. If we have two operations, a and b such that (a * b) = (b * a), we
say the “operation a commutes with operation b” and “a and b are com-
muting elements.” Operations can commute with one another even if they
are contained in a non-commutative group. For example, even though the
T/I group is not commutative, we can still say that “the operation T6 com-
mutes with the operation I10,” since (T6 * I10) = (I10 * T6). A theorem in
GMIT (50) tells us that in a given GIS:

any interval-preserving operation commutes with any transposition
operation.

Algebraically we can write this theorem as P * Ti = Ti * P, where P is
some interval-preserving operation, and Ti is a transposition by interval
i, i an element of IVLS.28 Because P commutes with any operation from
STRANS, Lewin refers to the group of P-operations (of interval-
preserving operations) as COMM (Lewin 1995, 105). In this context, the
group of transpositions (e.g., STRANS1) is referred to as SIMP, and the
groups COMM and SIMP are each called the dual of the other.29 SIMP
is the dual of COMM, and COMM is the dual of SIMP. Figure 20 shows
the group table for our example of a COMM group (the dual of the SIMP
group of Figure 7). Putting together theorems 3.4.2 and 3.4.7 (GMIT
46–48) tells us that the number of transpositions is the same as the num-
ber of interval-preserving operations (since Ts and Ps are in bijective cor-
respondence). So we know COMM in Figure 20 contains all of the inter-
val-preserving operations for STRANS1: {e, Q3, Q9, Q3Q3, X1, X2, X4,
X5}.30

Sentences (36), (37), and (38) illustrate the claim that any element of
STRANS2 commutes with any element of STRANS1. Figures 18 and 19
are used to work out (36)–(38).

(36) Q3(L(C)) = L(Q3(C)) = C≥ [L and Q3 switch positions.]

(37) X2(M(F≥)) = M(X2(F≥)) = D≥ [X2 and M switch positions.]

(38) Q9(R3(E)) = R3(Q9(E)) = A≥ [Q9 and R3 switch positions.]

Just from looking at the mapping tables it is not obvious that the opera-
tions of STRANS2 (= COMM) are going to be the interval-preserving
operations for STRANS1. Indeed, the operations of COMM are unfamil-
iar. As shown in Figure 19, X1 exchanges the positions of any two notes
that are one semitone apart, X2 two semitones apart, X4 four semitones
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apart, X5 five semitones. And as mentioned, Q3 sends the C-D≥-F≥-A
diminished seventh in one direction and the C≥-E-G-A≥ diminished sev-
enth in the other direction. The composition (Q3*Q3) sends a pitch to its
tritone-distant partner.

Unusual as they are, these operations do form a group. Figure 20 sat-
isfies Cayley’s observation (mentioned earlier) that in a group table each
element will appear precisely once in each row and each column. The
mapping tables in Figure 19 show that COMM is a group which acts sim-
ply transitively on S. Therefore, it forms an STRANS2 system in its own
right. Further, a GIS2 can be derived from STRANS2 just as we derived
GIS1 from STRANS1. So the dual group COMM gives rise to STRANS2

and GIS2 systems.
Further, a larger group (but not an STRANS system) results from

combining a non-commutative STRANS with its dual. PETEY is the
family of all operations on S that can be expressed as (functionally equiv-
alent to) something of form PT, where P is some interval-preserving
operation and T is some transposition (GMIT 57).31 By the closure con-
dition, any operation in the larger group PETEY must be either an ele-
ment from one of the groups or an element resulting from multiplying
elements of one group with elements of the other. What kind of new oper-
ations exist in the larger group? We can look at a new element by multi-
plying one element from STRANS1 with one element from STRANS2.
Let us select K from STRANS1 and Q3 from STRANS2. Figure 21 shows
the mapping table for the new operation which we will call “W,” W =
(Q3*K). The left arrow shows the action of K, the right arrow Q3.

As the mapping table shows, the operation W maps scale segments to
consonant triads and other familiar chords. For instance, {C, C≥, D≥} gets
sent to an E≤ major triad, {C≥, D≥, E} to a C minor triad, {D≥, E, F≥} to a
C major triad, {F≥, G, A, A≥} to an F≥ minor-seventh chord, and {C≥, D≥,
E, F≥} to the C major-minor triad. The operations found in the larger
group are musically suggestive, with W bringing to mind octatonic pas-

Figure 20. Group table for STRANS2 (= COMM)

e Q3 Q9 Q3Q3 X1 X2 X4 X5

e e Q3 Q9 Q3Q3 X1 X2 X4 X5

Q9 Q9 e Q3Q3 Q3 X2 X5 X1 X4

Q3 Q3 Q3Q3 e Q9 X4 X1 X5 X2

Q3Q3 Q3Q3 Q9 Q3 e X5 X4 X2 X1

X1 X1 X2 X4 X5 e Q3 Q9 Q3Q3

X2 X2 X5 X1 X4 Q9 e Q3Q3 Q3

X4 X4 X1 X5 X2 Q3 Q3Q3 e Q9

X5 X5 X4 X2 X1 Q3Q3 Q9 Q3 e
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sages by Bartók and Messiaen in which scalar melody is accompanied
with tertian harmony.32

We now take illustrations from two familiar groups: the T/I group of
atonal theory and the L′/R′ group of neo-Riemannian theory. By testing
for commutativity,33 sentences (39), (40), and (41) illustrate the claim
that the neo-Riemannian L′/R ′group is the dual of T/I when both are act-
ing on consonant triads.

(39) L′(I4(G,B,D)) = I4(L′(G,B,D)) = (B≤,D,F) [L′ and I4 switch
positions.]

(40) L′R′(T5(C,E≤,G)) = T5(L′R′(C,E≤,G)) = (C,E≤,G) [L′R′ and T5

switch positions].

(41) R′(I1(A,C≥,E)) = I1(R′(A,C≥,E)) = (C,E,G) [R′ and I1 switch
positions.]

We noted earlier that the neo-Riemannian L′/R′ group acting on triads is
the dual of the atonal T/I group acting on triads. So the union of L′/R′
(taken as COMM) and T/I (taken as SIMP) gives us another example of
a larger, PETEY group. This larger group contains new operations not
included in either L′/R′ or T/I, for instance, the operation (T1 * L′). At
first glance, it may seem that (T1 * L′) is not a new operation but merely
another name for I0 from T/I or PLR from L/R, since (T1 * L′), I0, and
PLR operations all send C major to F minor, as shown in the first row of
Figure 21. However, (T1 * L′) is indeed a new operation and not the same
as either I0 or PLR, as revealed in the second row of Figure 22. As dis-
cussed earlier, for two operations to be considered equivalent, the entire
mapping table for the first must be identical to that for the second; it is
not enough that they share one entry in common.

How can one find the interval-preserving operations “out there some-
where” (like Q3 in Figure 19) that correspond to a given non-commuta-
tive system? An important result in GMIT tells us in a noncommutative
GIS there exist transpositions that do not preserve intervals, and there
exist interval-preserving operations that are not transpositions (GMIT

Figure 21

C → C≥ → A≥
C≥ → C → D≥
D≥ → A≥ → G
E → A → C
F≥ → G → E
G → F≥ → A
A → E → C≥
A≥ → D≥ → F≥
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50). By this we know there must exist somewhere an interval-preserving
operation for STRANS1 not in STRANS1. Let us call this operation P.

(42) P(C) = C≥ (Step 1).

Step 1: To start our search for an interval-preserving operation P, in
(42) we take P(C) = C≥.34 Some trial-and-error is involved in this kind of
start since we cannot know in advance if it will lead to an operation that
is in COMM (and not just again in SIMP). All we know at this point is
there are many permutations of S that send C to C≥. Our immediate goal
is to see if any one such permutation is interval preserving.

Step 2: Select from our system, STRANS1 an operation that sends
something to C. We select C because choosing what is inside the paren-
theses of our equation, P(C) = C≥, is the trick that gets us the answers we
want. In the mapping table for STRANS1 (Figure 18) are eight choices:
R3(A) = C, R6(F≥) = C, R9(D≥) = C, K(C≥) = C, L(E) = C, M(G) = C, and
N(A≥) = C. In (43) we arbitrarily choose R3(A).

(43) R3(A) = C (From group action table, Figure 18).

Step 3: In (42), which says P(C) = C≥, replace C with R3(A) since in
(43) we see R3(A) = C. The result is (44).

(44) P(R3(A)) = C≥ (Substituting (43) in (42)).

Step 4: The theory tells us that any interval-preserving operation is
going to commute with every transposition. So by the definition of a
commuting element, we may reverse the positions of P and R3.

Remember that P is the interval-preserving operation we are con-
structing using this method, and R3 is a transposition from STRANS1. By
commutativity, we may rewrite (44) as (45).

(45) P(R3(A)) = R3(P(A)) = C≥ (Elements of COMM commute with
elements of SIMP).

Step 5: Using the mapping tables in Figure 18, in (46) solve for P(A).
So far we have determined that R3(P(A)) = C≥. Our table tells us (46), that
R3(A≥) = C≥.

(46) R3(A≥) = C≥ (From group action table, Figure 18).

Figure 22. Comparison of excerpts from mapping tables

T1(L′) I0 PLR

C,+ → F- C,+ → F- C,+ → F-

C,- → A+ C,- → F+ C,- → G+
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(47) P(A) = A≥ (Substituting (46) in the middle term of (45)).

Sentence (47) follows from (46) by substitution and gives us the
answer we seek. We now have one more value for the operation P. We can
determine another value by repeating the steps of (43)–(47) using the
new piece of information we have, that P(A) = A≥. Using our trick, we
again search for an operation that gives us the value inside the paren-
theses, in this case the pitch A. From the mapping table (Figure 18) we
notice that K(E) = A. Substituting K(E) for A, we can rewrite P(A) = A≥
as P(K(E)) = A≥. Using commutativity, we can rewrite this last equation
as K(P(E)) = A≥. Since K(D≥) = A≥, we conclude that P(E) = D≥. These
five steps are summarized in (48)–(52).

(48) K(E) = A (From group action table, Figure 18).

(49) P(K(E)) = A≥ (Substituting (48) in (47)).

(50) K(P(E)) = A≥ (Elements of COMM commute with elements of
SIMP).

(51) K(D≥) = A≥ (From group action table, Figure 18).

(52) P(E) = D≥ (Substituting (51) in (50)).

Upon reaching (52), we know that P(E) = D≥, P(A) = A≥, and P(C) =
C≥. If we continue repeating our five steps we will eventually construct
the mapping table for the operation X1 of STRANS2 (Figure 19). X1 is
not an element of STRANS1 so we have discovered the operation P in
COMM that we seek. In general, by knowing the action of the transposi-
tions and taking advantage of the knowledge that elements of COMM
commute with elements of SIMP, we can start with a GIS and find its
interval-preserving operations.

Figure 23 lists some of the groups involved in GIS theory. We have
seen examples of groups 1–4. If one looks only at commutative GISs, the

Figure 23

1. The group of intervals for the GIS (viz., IVLS).
2. The group of transpositions (TNSPS); our example was

STRANS1.
3.* The group of interval-preserving operations (PSVS); our example

was STRANS2.
4.* The group generated by PSVS and TNSPS (PETEY).  We gave an

example of an element from this group, element W (Figure 21).
5. The group of inversions (INVS). (See GMIT 58.)
6.* The group of interval-reversing operations. (See GMIT 58.)
7. The group generated by PSVS, TNSPS, and INVS (PETINV).



cases marked with an asterisk do not need to be considered separately.
This is because in a commutative GIS the interval-preserving operations
are the transposition operations, and the inversions are the interval-revers-
ing operations. So in the commutative case groups 3 and 4 do not need to
be considered separately since both are the same as group 2, group 6 is
the same as group 5, and group 7 is the union of groups 2 and 5.35

Before concluding, three caveats are in order. First, although this arti-
cle has focused on systems containing finite numbers of musical objects
and transformations, infinite systems are covered by the theory. GMIT
includes a discussion which shows how to convert an infinite into a finite
set of musical objects via an equivalence relation and an infinite into a
finite set of transformations via a quotient group (GMIT 7–37). Second,
although this article’s examples used only pitch classes and triads, the
theory actually can accommodate any kind of musical object one can
imagine, such as relative durations, timbral distributions, dynamics, or
on-off states however construed (See GMIT 60–88 and Lewin 1995).

Third, although it was expedient to employ a temporal metaphor
wherein elements are described as moving from a present into a future,
actually a set of elements connected by transformational arrows is an
abstract, atemporal scheme. A twelve-tone work does not necessarily
present rows in the order they appear in a row table and might not present
all the rows of the table. A transformational network is like a row table in
being a scheme which displays “out of time” the universe of possibilities
engaged by a given work. In a transformational network, the direction of
the arrows specify the directionality of moves, not necessarily the tem-
poral order of moves. For instance, an arrow for the transformation T2

would point towards D from C. To reverse the arrow would mean some-
thing other than T2, since pointing towards C from D would be T10. So an
arrow for T2 is directional—though not necessarily in a temporal sense.36

These temporal considerations are taken up in GMIT’s study of transfor-
mational networks (GMIT 209–19).

VII. Conclusion.

We conclude with a few notes on the scope of GMIT’s theory.37 The
notion of interval has been central to how composers and listeners have
“conceptually structured” sound—at least in the Western art music tradi-
tion—and Lewin’s work increases the tradition’s scope by addressing
diverse musical phenomena in intervallic terms.38 But while GIS theory
makes all kinds of intervallic readings available, their is no claim that all
theoretically possible readings will be insightful.39 For instance, formal-
izing a particular rhythm as a GIS interval does not automatically invest
insightfulness into the description. Because a compelling interpretation
of musical perceptions is needed to turn a theoretically true statement into
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a meaningful statement, analytical judgment plays a central role in mean-
ingfully reducing the scope of the theory.40 So although it may appear that
the mathematics of Lewin’s work is a language of scientific positivism,
the emphasis on perceptual context and interpretation actually distances
GMIT’s theory from scientific theory—at least the kind of “covering law”
theory often cited in connection with scientific research.41

A music theory for communicating perceptions and intuitions locates
music in experience and not in nature. Mathematician Reuben Hersh
similarly notes how mathematics is interior yet social: “The study of the
lawful, predictable parts of the physical world has a name. That name is
‘physics.’ Study of the lawful predictable parts of the social-conceptual
world has a name. That name is ‘mathematics’” (Hersh 593). While it is
misleading to regard GMIT’s mathematics as serving the ends of a strong
scientific explanationism,42 it is revealing to consider it from a “social-
conceptual” perspective—particularly as serving the ends of communi-
cation.43 In minimizing the kind of misunderstanding that arises from
ambiguity of terms,44 GMIT’s mathematics gives us relatively stable
terms for exchange in musical culture.

The terms of GMIT’s theory are precise with respect to the theory but
open-ended in connotation through metaphoricity. Lewin writes “When
we describe the ways in which musical sound seems conceptually struc-
tured, categorically prior to any one specific piece, we nevertheless intend
our conceptual sound-worlds to be rich in potential metaphors for ana-
lyzing specific pieces. At least most of us do. . . . It is not a question of
our intending metaphorical discourse or not, when we bring a theory to
an analysis. We cannot help it” (Lewin 1991, 118). Metaphoricity leaves
open the possibilities for how designative terms of the theory may be
linked to perceptual contexts and lends a wide scope to the theory’s ana-
lytical application. Wide scope is also given by the possibility of multi-
ple, equally sturdy readings of a given passage.45 In applying GMIT’s the-
ory in analysis, one judiciously selects both a musical space and set of
transformations to capture a musical intuition. A passage that stimulates
more than one intuition may inspire multiple descriptions, perhaps each
with a different choice of space and transformations.46

Generalizing the notion of interval, encouraging metaphoricity and
multiple description, and emphasizing perceptual context and intuition
give us a theory with many analytical possibilities, many of which have
yet to be realized. I hope this article sparks new analytical work and
encourages dialogue between transformational specialists and non-spe-
cialists. Of course there is more to GMIT than the few formal concepts
covered herein and more points of entry to the work than the one offered
here. The rationale behind this article’s focus is a view of GMIT that I
share with John Clough:
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[I]t would be a great mistake to assume that the mathematics is in any
sense superfluous, for it is the very essence of Lewin’s accomplishment
to have captured, formally, a means of supporting the wealth of musical
intuitions that drive his analytical quests. . . . . For the theorist who wishes
to try Lewinesque analysis or theory construction, the importance of
understanding the foundations of his work cannot be overstated. (Clough,
1989, 227).
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NOTES

1. I thank David Clampitt, Thomas Fiore, Andrew Mead, and Robert Morris for dis-
cussions that shaped the preparation of this article.

2. Lewin 1987.
3. This article is informal in that claims are not proved but rather illustrated by exam-

ple. The location of proofs and formal definitions is indicated by references to
GMIT or Armstrong 1988. 

4. For an introduction to the T/I operations of twelve-tone theory, see Rahn 1980,
40–55. For an introduction to neo-Riemannian theory, see Cohn 1998. The neo-
Riemannian L/R group studied in this article uses the PLR family of operations.
A study of the PLR family may be found in Cohn 1997. Morris 1995 compares T/I
with Lewinian-transformational readings.

5. In this article, I have chosen to use the term “system” for both generalized inter-
val systems and two-component systems composed of a group together with a set
on which the group acts in a simply transitive manner. See Armstrong 91 for an
exposition of a simply transitive group action. For more on the theory of systems
see Satyendra 2002. 

6. As will be discussed soon, a group is a composite entity that combines a set and a
binary composition. It serves present purposes to focus on just the set component
of a group. Though I describe a musical space as a set, GMIT describes it as a
“family.” Lewin reserves the term “set” to denote finite subsets of a musical space.
At times it is useful to have both terms “family” and “set.” Compare GMIT pp. 1
and 88 to see the context in which Lewin distinguishes between the usage of these
terms. 

7. In this article all references to pitch classes and triad roots assume enharmonic
equivalence.

8. For more on this point see GMIT p. 180, where triadic-network transformations
are not considered intervals because they do not satisfy the simple transitivity
condition.

9. Homomorphisms, isomorphisms, and anti-isomorphisms are also cases in which
mappings may occur between unlike sets. All three arise in GIS theory. See GMIT
13–15. Also Cohn functions employ mappings between unlike sets (Lewin 1996). 

10. Parentheses notation is used in Morris 1987 and Rahn 1980.
11. See the discussion on page 134 for a caveat about the temporal interpretation of

transformations.
12. The symbol “+” is reserved for binary composition which is commutative.
13. Here I take advantage of Cayley’s theorem which permits me to represent each

group element by a permutation table. This license amounts to considering a given
group not as itself, so to speak, but in terms of another group, a group of permu-
tations in which it is may be embedded via a homomorphism. This is a mathe-
matical subtlety that does not affect the substance of our discussion (Armstrong
41).

14. Armstrong 26 shows this claim algebraically.
15. See in connection with (11) Rahn 1980, 25, (12) GMIT 75–76, and (13) & (14),

Lewin 1995, 90.
16. R0, R3, R6, and R9 of STRANS1 resemble T0, T3, T6, and T9 of T/I respectively.

However, though the R operations resemble the T operations, they are not equiv-
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alent. That is because the R operations act on an eight-element space whereas the
T operations act on a twelve-element space. This becomes clear if one writes the
table for any T operation. The table for a T operation will have twelve rows
whereas the table for an R operation will have only eight rows. K, L, M, and N
similarly resemble I1, I4, I7, and I10, though similarly need to be labeled differently.

17. In a GIS, transposition by Ti is defined int(s, Ti(s)) = i, where i is an element of
IVLS (GMIT 46). 

18. Hook 2002 provides theory and nomenclature for studying the larger group of uni-
form triadic transformations of which neo-Riemannian operations are a subgroup.

19. Since atonal theory commonly uses a circle with twelve points on the circumfer-
ence as an illustrative tool, we include a consideration of the symmetries of the
dodecagon. Neo-Riemannian theory also uses the symmetries of the dodecagon as
a geometric representation (Clough 1998).

20. If we take just the two T/I elements T5 and I0 and list the possibilities of their com-
bination we end up with the full set of twelve inversions and twelve transpositions.
Since T5 and I0 are all we need to get the full T/I group, a mathematician would
say “T5 and I0 are generators for the T/I group.” A group is said to be generated
by two elements a and b if any element in the group can be written as a product of
powers of a and powers of b. Elements a and b are called generators. Describing
a group in terms of its generators is the subject of group presentations (Armstrong
166). 

21. Clampitt 1997 introduces the “L/R” notation for the PLR group.
22. See Armstrong 15–18 for more on dihedral groups.
23. See Armstrong 32–36 for an expanded discussion of group isomorphisms. 
24. For more on defining relations see Artin 219–23.
25. A subgroup H of a group G is the group H composed of a subset of elements from

G which uses the binary composition from G.
26. Alternatively, one can say that scrutinizing a group in isolation involves group

actions of a G on an S, but where S = G, that is, where the space consists of ele-
ments of the group. 

27. See Clampitt 1998 which compares the analytical implications of the two systems
in an analysis of a passage from Parsifal.

28. In this line of thinking we incorporate a conclusion from earlier in this paper: the
elements of an STRANS group are transpositions by the intervals of the corre-
sponding GIS. In this context “transposition” refers to transposition by GIS inter-
vals, which, as Figure 10 illustrates, is not necessarily the same thing as pitch-
class transposition. 

29. For more on dual groups see Fiore and Satyendra 2005. 
30. It can be proved that the elements of COMM are precisely the operations that com-

mute with SIMP. By this we know that COMM contains all the commuting ele-
ments g′ that satisfy the equality (g * g′) = (g′ * g) for all g in SIMP.

31. PETEY can also be described as the group generated by COMM and SIMP, since
any combination of operators can be reduced to the form PT. This reduction is pos-
sible because any P commutes with any T. 

32. PETEY from STRANS1 and STRANS2 contains 32 operations. Note that both
groups have eight elements. By a theorem of group theory, we conclude that the
size of the group is (8 × 8)/2 = 32. See Armstrong 169. 
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33. The synonymity of commutativity with interval preservation is given in Lewin
1995 (101) and proven in Fiore and Satyendra 2005, Theorem 2.1.

34. Thanks go to David Clampitt for pointing out this procedure to me.
35. The group generated by TNSPS and INVS is the set-theoretic union of TNSPS and

INVS since the product of a transposition and an inversion is an inversion. 
36. This view of transformational networks as existing outside of the temporal flow of

a piece accords with Lewin’s statement that “music theory attempts to describe the
ways in which, given a certain body of literature, composers and listeners appear
to have accepted sound as conceptually structured, categorically prior to any one
specific piece.” (Lewin 1991, 112). 

37. While this section characterizes Lewin’s theory in terms of his own statements, a
theory of course can be fruitful in ways that go beyond or even against the inten-
tions of its author. Accordingly, this discussion makes no claim that we should
limit the possibility of Lewin’s theory through intentional arguments.

38. Lewin situates his work within the history of interval theory in “Appendix A:
Melodic and Harmonic GIS Structures; Some Notes on the History of Tonal The-
ory” (GMIT 245–50).

39. Lewin remarks “it is unfair to demand of a music theory that it always address our
sonic intuitions faithfully in all potential musical contexts under all circum-
stances. It is enough to ask that the theory do so in a sufficient number of contexts
and circumstances” (GMIT 85).

40. In Lewin’s words, “One can only demand that a preponderance of its [a theory’s]
true statements be potentially meaningful in sufficiently developed and extended
perceptual contexts” (GMIT 87). This view is not peculiar to Lewin but is reflected
in much analytical work. Cone, for instance, writes “The ‘interesting facts’ about
such a work are not those that are simply true but those that are relevant to our per-
ceptions” (Cone 5).

41. Though there is no consensus on what comprises a scientific theory the covering
law model is the most discussed example of a scientific theory (Lycan 411). A
modified version of this model was suggested for music theory by Brown and
Dempster (1990). In the covering-law model, valid inferences from data are mean-
ingful without the need for interpretive adjudication. In their article Brown and
Dempster argue that a proper music theory should have the kind of predictive and
explanatory power of a deductive-nomological scientific theory.

42. The idea that mathematics supports scientific music theorizing is associated with
Milton Babbitt who advocated that music theories should be scientific. Given the
formative role of Babbitt’s work in the history of recent music theory, the fact that
both Lewin and Babbitt draw on the language of mathematics in general and on
group theory in particular begs the question of whether Lewin’s work aims to be
in some sense “scientific.” While this article argues against a scientific view of
Lewin’s theory, Babbitt’s emphasis on precision in theoretical language resembles
Lewin’s. For more on the linguistic turn in Babbitt’s scientific view of theory, see
Guck 1997.

43. John Rahn notes “We must not take the presence of formal language as a stigma
or sign pointing to a belief in D-N or in certain paradigms for scientific research,
or indeed to anything other than a desire to express ideas formally—though one
might venture further to hypothesize that the author of formal language might
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believe that in the context of his text, the use of formal language serves commu-
nication well” (Rahn 1989, 146).

44. The mathematical notion of simple transitivity, for instance, guarantees that we
will have no ambiguous interval names (the interval from s to t will have exactly
one value). 

45. Kevin Korsyn remarks “Lewin’s listening subject, I submit, also lives in ironic
mode, constantly aware of the possibility of multiple redescriptions of its own
experience” (Korsyn 173). Korsyn’s comment refers to the study of the temporal
experience of music in Lewin 1986, which considers the ongoing reinterpretation
of passing musical events in light of subsequently heard events. 

46. As Lewin puts it, “we do not really have one intuition of something called ‘musi-
cal space.’ Instead, we intuit several or many musical spaces at once.” (GMIT
250). When the relationships in each space support it, GIS theory allows for the
integration of multiple intervallic intuitions into a single system through various
means such as “direct product groups” (GMIT 37–46). 
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