

MCM Design Document
Revision 2.0

21 May 2001
Revised 5 June 2001

Cayci Suitt
Gene Wie

Salvador Ledezma
Jimar Garcia

 2

1. Introduction

The Motion Capture Music System (MCM) is a software system that will be developed
by the MCM Project Group for the University of California, Irvine (UCI) Dance
Department. Its purpose shall be to interpret three-dimensional (3D) motion data
and generate music based on the motion.

The project sponsors are Ms. Lisa Naugle, Assistant Professor, and Mr. Christopher
Dobrian, Associate Professor, in the Dance and Music Department, respectively, of
the UCI Claire Trevor School of the Arts (SOTA). Mr. Dobrian is also a professor in
the Information and Computer Science (ICS) Department at UCI.

Currently, the project sponsors work with a Vicon Motion Systems (Vicon) Vicon8
Optical Motion Capture (Vicon8) System located in the School of the Arts Music
Media Center. The Vicon8 System resides in the motion capture studio. In this
room, there are eight infrared cameras that capture motion data from a predefined
area of the room. The capture subject will don 1 to 48 spheres and move about
within a cylindrical portion of the 3D space in the room. A circle is marked off on the
ground to represent the projection of the 3D cylindrical space. Each of the spheres
represents a point in 3D space. The cameras capture the points in motion at a
variable rate specified by the user, typically 30 frames per second. At the present
time, the motion capture is not used as input for creating new information. It
records motion data via the network of cameras, but does not allow the
simultaneous generation of a music or visual accompaniment based on the motion.

The project sponsors would like to expand the capabilities of the existing system so
that in can be used in new and innovative ways, such as music composition. The
MCM will interpret the motion data captured by the network of infrared cameras, and
generate music in Musical Instrument Digital Interface (MIDI) format in real-time.
This will allow the subject’s specific movements to generate different pitches, change
the intensity of the music, or change the voice of the instrument. The mapping of
specific movements to pitch, tone, volume, and instrument will be customizable and
it will allow the composer to load and save different mapping configurations.

Key features of the MCM system include real-time interpretation and a Graphical
User Interface (GUI). MCM will translate the 3D motion data based on a user-
specified mapping. This translation will be outputted in MIDI data in real-time. The
GUI will allow the user to specify a mapping. It will allow the user to customize,
save, and load files, which will contain specific mappings of motion to music.

The requirements documents defined the functional and non-functional specifications
for the MCM software system and its interaction with the existing Vicon8 System. It
is included in this document by reference.

The purpose of this document is to describe the design of the MCM software system.
It primarily describes the architectural style of the system, the modules that
comprise the system, and how those modules interact with one another.

At a high level, MCM is a two-stage program and therefore is comprised of two
separate executable programs, MCMMap and MCMTranslate.

 3

1.1. MCMMap accepts data from the user in order to create a mapping of C3D
motion data onto MIDI data. The data input program will consist of a GUI through
which the user can input, save and/or load his translation choices.

1.2. MCMTranslate uses the mapping to perform the specified mapping in real-
time. The translation program acquires the data from the network port that
connects the Vicon Real-Time Workstation and the translated visual output via
reader code. This recorded data is what is translated from the streaming C3D
motion data format to MIDI music.

In addition to this introduction, this document details the design specifications within
the context of the following sections:

2. Project Plan – The project schedule and resources will be addressed in this

section. They have been updated from the plan presented in the
Requirements document to reflect changes in the schedule.

3. Design Specification – This section will give a detailed overview of the system

design, including an architectural overview and the module specification.

4. Integration Test Plan – In this section, the plan for integration testing will be
presented. The Integration Test Plan and its implementation will ensure that
the software modules defined in this document are able to interact.

5. Tracking and Control Mechanisms – This section will describe the tracking and

control mechanisms implemented specifically for the design phase of the
project.

6. Requirements Changes – This section will describe the requirements that have

changed in light of the conversations for the sponsor and/or after conducting
a technology review.

7. Minutes – Minutes of all the meetings held by the project team in support of

the development of this document will be included in this section.

8. Glossary – Technical terms and acronyms presented in this document will be
defined in the glossary.

9. Revisions – Revisions to this document will be listed in this section. They will

include date of revision, the nature of the revision, the team member that
made or requested the revision, and the sections of this document that are
affected by the revision.

 4

2. Project Plan

The following continuation of the project plan from the Requirements document has
been slightly revised given the time frame and actual progress on the system.

5-6 Architectural Design All

6 Produce Design Specifications All

6 Develop capture/translation algorithms All

6 Prepare Technical Presentation Gene, Sal
6-7 Give Technical Presentation, Submit Report All

7 Complete Design Specifications All

7-8 Implement Mapping Functionality
?? User interface
?? Disk I/O

Cayci
Cayci

7-8 Implement Translation Functionality
?? Vicon Motion Data Stream Reader
?? Translator Process
?? MIDI Output

Jimar
All
Gene

8 Test Mapping Functionality Cayci

8 Test Translation
?? Unit Testing
?? Integration Testing

Gene, Jimar, Sal
All

8-9 Integration Testing (MAP+TRANSLATE) All

9 Usability Testing All

9-10 Performance Analysis All

10 Final Demonstration All

11 Maintenance, Revision All

 5

3. Design Specification

3.1 Architectural Overview

The overall MCM system has no specific architectural style; it is simply comprised of
two separate programs, MCMMap and MCMTranslate.

MCMMap is defined as a hierarchy of functions. It is composed of the functions that
make up the GUI. It also reads and writes user-input to a file.

The architectural style for the Translation portion of MCM is Pipe and Filter. The
MCMTranslate program/module adheres to this architectural style in that the data is
collected, filtered, manipulated and then output again without any other program
"knowing" the inner workings of this data translation.

The MCMTranslate needs the MCMMap to function in that it cannot filter data without
a mapping, but the reverse is not true. A user is able to create mappings without
ever using them to translate 3D motion data into MIDI.

The following table gives and overview of the modules that compose the MCM
system, along with their completion status as of the first writing of this document:

Module Developer Coded? Unit
Tested?

Integration
Tested?

Map (main) Cayci Yes Yes No
Map::GUI Cayci Yes Yes Yes
Map::IO Cayci Yes Yes Yes
Translate (main) Gene/Sal No No No
Translate::Vicon Jimar Yes No No
Translate::MappingInfo Sal No No No
Translate::MIDI Gene Yes No No
Translate::Translator J/G/S No No No

 6

3.2 System Architecture Overview

The figure on this page provides a high-level overview of the data flow of the MCM
System.

3.3 Subsystem Narrative

3.3.1 User Interface

The user interface of the Mapping portion of the MCM system is comprised of a GUI
interface built in the Java programming language. It provides the user the ability to
enter in information that correlates motion data to MIDI commands.

3.3.2 Input/Output (MAP)

MCM System

Vicon 8
Camera
System

Network Hub

Recording
Workstation

RT
Workstation

MIDI Output
Device

RAW Cam
Data

MCM
(residing as

program)

Display
Device

MIDI
Commands

Video Data

RAW Cam
Data

C3D Data C3D Data

VICON
Motion Data

Stream
Reader

(TCP/IP port
800)

Informal Data Flow

Proprietary Data
Processing
Workstation Processed

Data

 7

The Mapping portion of the MCM system, having received user input correlating
motion data to MIDI commands, can save or load a specified “mapping” by the user
to a file on disk.

3.3.3 Input/Output (TRANSLATE)

The Translation portion of the system, which runs as a standalone executable, loads
in the saved mapping on disk into memory.

3.3.4 Storage in Memory

The mapping information is stored in memory as a hash table to allow efficient
insertions and searches.

3.3.5 Vicon Motion Data Stream Reader

The Vicon-supplied motion data stream reading code reads the real-time motion data
off the network; the data is sent in real time by the Vicon 8 camera system to its
recording workstation and intercepted by this subsystem.

3.3.6 Translator

The Translator Portion of the MCM system uses the mapping provided by the Map
Portion of the MCM system to translate the motion data provided by the stream
reader into corresponding MIDI commands. It is in here that the set of heuristics
defined by the mapping is applied to the set of incoming motion data in order to
transform it into an equivalent in sound data.

3.3.7 MIDI

Improv 2.3.0 is a library of routines for MIDI command output that MCM uses to
generate the sounds. The Translator sends the Improv-based MIDI module the
relevant commands it has determined from the heuristics for the mapping to
translation for immediate output of the sound to a General MIDI (GM) compatible
device. Permission has been granted to use this code for the non-commercial
purpose of academic research.

3.3.8 Limitations

Limitations on the current design include:

3.3.8.1 Full System for testing not present at UCI. Integration testing must be

completed on an emulator provided by Vicon

3.3.8.2 Dependency on external third-party code. Much of the network stream
reading capability is defined in code provided by Vicon. In order for
implementation to succeed, this code must not have any significant faults.

3.4 Module Specification

 8

3.4.1 MCMMap

Purpose: This is the top-level module that represents the data input portion of the
MCM. This module will collect data from the user and save it to a file so that
MCMTranslate can use it. The main() will exist in this module and will be the first
program the user runs.

In interface: none

// DEFINE: An "in" interface is what others call

Out interface: none

// DEFINE: An "out" interface is what [the module]
// needs from others

3.4.2 MCMMap Modular Design

MCMMap::GUI

Purpose: This is the graphical user interface used for collecting mapping choices
from the user.

In interface: none

Out interface:

String[][] getData(File mapname)
void SendData(String[][] data, File mapping, int rows)
void RowData.addDuration(String d)

MCMMap::IO

Purpose: This class handles IO operations for MCMMap.

In interface:

String[][] getData(File mapname)
void SendData(String[][] data, File mapping, int rows)
void RowData.addDuration(String d)

Out interface: none

MCMMap::RowData

Purpose: This is the data structure format of the file that stores the user-specified
mapping in the GUI.

In interface:
 void addDuration(String d)

Out interface: none

 9

3.4.3 MCMTranslate Modular Design

3.4.3.1 MCMTranslate is comprised of four sub-components: Stream Reader,
Translator, Mapping Info (I/O), and MIDI.

3.4.3.2 Interfaces

Module: MCMTranslate::StreamReader

Function Name Return

Type
Parameters Description

StreamReader None None Constructor
setIPAddress void char * strIPAddy Sets internal variable that

stores the IP address of
the Vicon Real Time
system

setHostName void char *
strHostName

Sets the internal variable
that stores the host name
of the Vicon Real Time
system

connect bool None Connects with the Vicon
Real Time system. This
function will need
threading so we can
populate a local cache
independently of being
polled for reconstruction
points.

cacheIsEmpty bool None Returns TRUE if

MIDIControl

Translator

StreamReader

Mapping Info

Network

 10

reconstruction point
cache is empty.

getReconstructionPt int * None Returns an integer array
with three elements
containing the x, y, and z
coordinates of the queued
reconstruction point.

isConnected bool None Returns TRUE if still
connected with the Vicon
RT system.

queryDisconnect void None Queries the
StreamReader object that
a disconnection request
has been made. It will
attempt to disconnect in
the next network polling
period.

getIPAddress char * None Returns the stored IP
address of the Vicon RT
system.

getHostName char * None Returns the stored host
name of the Vicon RT
system.

Module: MCMTranslate::MappingInfo

Function Name Return

Type
Parameters Description

MappingInfo None char* fileName Sets the internal variable that
stores the absolute path of the
mapping file. The size of the
hast table is set and the file is
open, parsed, and nodes are
inserted into the hash table.

allocateHTable void None Sets the size of the hash table to
the default constant size. It also
allocates an int array that tracks
the number of items stored in
each array slot and initializes it
to 0.

hash unsigned
int

string bodyId, int
tableSize

The hash() function hashes the
bodyId and efficiently finds the
location of an item to be inserted
or searched into the hash table.
It is a standard hash function for
strings taken from Weiss,
Algorithms, Data Structures, and
Problem Solving with C++,
Addison-Wesley, 1996, p. 611.

 11

insert void string bodyPart,
char axis, Node*
n

Inserts a bodypart/axis
combination into the hash table.
The body part and axis are
concatenated and together they
form the key that is hashed. The
node is then inserted into the
front of the linked list at that
location. The number of items at
that location is incremented.

find Node* char* bodyPart,
char axis

Given a bodypart/axis pair, the
Node associated with the pair is
returned.

minRangeMotion int char* bodyPart,
char axis, char*
command

Given a bodypart/axis/midi
command triple, the associated
minimum physical range limit is
returned.

maxRangeMotion int char* bodyPart,
char axis, char*
command

Given a bodypart/axis/midi
command triple, the associated
maximum physical range limit is
returned.

minRangeMidi int char* bodyPart,
char axis, char*
command

Given a bodypart/axis/midi
command triple, the associated
minimum Midi range limit is
returned.

maxRangeMidi int char* bodyPart,
char axis, char*
command

Given a bodypart/axis/midi
command triple, the associated
maximum Midi range limit is
returned.

commandType string* char* bodyPart,
char axis

Finds and returns all the Midi
commands associated with a
given bodypart/axis pair.

getDuration string* char* bodyPart,
char axis, char*
command

Given a bodypart/axis/midi
command triple, the associated
duration is returned. If the
command is not a note, then the
value stored is the string "null".
For this reason, the duration is
stored internally as a string.

exists bool char* bodyPart,
char axis

Searches and determines
whether there is any Midi
command associated with a
given bodypart/axis pair.

numAtlocation int char* bodyPart,
char axis

Determines the number of nodes
associated with a given
bodypart/axis pair. More
specifically, it returns the number
of nodes at a particular location
in the hash table, which
theoretically can be associated
with different bodypart/axis
pairs.

initialize void none The file with the mapping

 12

information is read and parsed.
Nodes are composed of 9
parameters. Based on these
parameters, the Nodes for
bodypart/axis pairs are created
and inserted into the hash table.

Module: MCMTranslate::MIDI

Function Name Return

Type
Parameters Description

MIDI output for the MCM system is handled by Improv 2.3.0, a library of C++
classes primarily consisting of generalized MIDI I/O communication functions; the
specific class MCM uses in the Improv 2.3.0 system for MIDI output is called
MidiOutput and has the basic functions MCM will use to output the sound as follows
(the use of this library allows MCM to directly send raw MIDI data to a General MIDI
(GM) compatible device for immediate output (from Improv 2.3.0 MidiOutput Class
Definition):

int cont(int channel, int controller, int data);

Sends the value for the MIDI continuous controller command (0xb0) on the
specified MIDI channel. Here is a list of continuous controllers.

?? channel: MIDI channel [0..15]

?? controller: MIDI continuous controller number [0..127]

?? value: MIDI data [0..127]

int off(int channel, int keynum, int releaseVelocity);

Sends a note off command using midi command 0x80 with the specified key
number and release velocity. Note that the most common way of turning off a
note is to send the note-on command (0x90) with an attack velocity of 0 (see
the play function.

?? channel: MIDI channel [0..15]

?? keyno: MIDI key number [0..127] (middle C = 60)

?? value: release velocity [0..127]

int pc(int channel, int timbre);
Sends a MIDI patch change which changes the timbre on the specified
channel. If you want to change to a timbre greater than 127, then check how
your synthesizer does this. Usually, timbres are organized into banks, and
you specify first which bank with the continuous controller #0.

int play(int channel, int keynum, int velocity);
Sends a note on or note off on the specified channel. If velocity parameter is
missing, then a note off command is sent.

?? channel: MIDI channel [0..15]

 13

?? keyno: MIDI key number [0..127] (middle C = 60)

?? value: attack velocity [0..127] (note off = 0)

int pw(int channel, int mostByte, int leastByte);
Sends pitch wheel information on the specified MIDI channel. For the three
parameter version, the mostByte = coarse tuning values 0..127 which are the
most significant 7 bits of a tuning value, and the fine tuning values
(leastByte) 0..127 are the least significant 7 bits of a tuning value. For the
two parameter version, tuningData is a 14 bit number.

int pw(int channel, int tuningData);
Sends pitch wheel information on the specified MIDI channel. For the three
parameter version, the mostByte = coarse tuning values 0..127 which are the
most significant 7 bits of a tuning value, and the fine tuning values
(leastByte) 0..127 are the least significant 7 bits of a tuning value. For the
two parameter version, tuningData is a 14 bit number.

int pw(int channel, double tuningData);
Converts a number in the range from -1.0 to +1.0 into a 14 byte number
which is sent out with the pitch wheel command.

void recordStart(char *filename, int format);
Starts recording MIDI output to the file filename according to the specified
format which defaults to ascii. MIDI output sent through the send command
are recorded, which output send through the rawsend command are not
recorded. If the file already exists, the file will be overwritten. The defined
formats are:

?? 0 ascii format

?? 1 binary format

?? 2 Standard MIDI file format, type 0

Here is a description of the formats for recording MIDI output.

void recordStop(void);
Stops recording MIDI output to the file specified with recordStart.

void reset(void);
sends the MIDI command 0xFF which should force the MIDI devices on the
other side of the MIDI cable (which is connected to the port of the MidiOutput
object) into their power-on reset condition, clear running status, turn off any
sounding notes, set Local Control on, and otherwise clean up the state of
things.

int send(int command, int p1, int p2);
Sends MIDI data from the computer to a synthesizer. If not recording, then
just calls rawsend . If recording, bytes are stored in an output buffer until the
buffer is supposed to be flushed. Then the time since the previous flush is
calculated and recorded, as well as all the bytes in the output buffer.

?? byte: an 8-bit MIDI value to be sent out.

 14

?? flush: 0=store byte in output buffer, 1=send output buffer data to
MIDI I/O as well as current byte.

int send(int command, int p1);
Sends MIDI data from the computer to a synthesizer. If not recording, then
just calls rawsend . If recording, bytes are stored in an output buffer until the
buffer is supposed to be flushed. Then the time since the previous flush is
calculated and recorded, as well as all the bytes in the output buffer.

?? byte: an 8-bit MIDI value to be sent out.

?? flush: 0=store byte in output buffer, 1=send output buffer data to
MIDI I/O as well as current byte.

int send(int command);

Sends MIDI data from the computer to a synthesizer. If not recording, then
just calls rawsend . If recording, bytes are stored in an output buffer until the
buffer is supposed to be flushed. Then the time since the previous flush is
calculated and recorded, as well as all the bytes in the output buffer.

?? byte: an 8-bit MIDI value to be sent out.

?? flush: 0=store byte in output buffer, 1=send output buffer data to
MIDI I/O as well as current byte.

void silence(int aChannel = -1);

silence MIDI data from the computer to a synthesizer. If channel == -1, then
send note off commands on all channels, otherwise send only on specified
channel.

void sustain(int channel, int status);
Turns on/off the continuous controller 0x40 (sustain). Turn on sustain with
sustain(1). Turn off sustain with sustain(0). Same as off=cont(channel, 0x40,
0), or on=cont(channel, 0x40, 127).

?? channel: MIDI channel [0..15]

?? status: on/off switch, [0..1] 0=off, 1=on

Module: MCMTranslate::Translator

Function Name Return
Type

Parameters Description

Translator None None Constructor
setRTHostName void char *

strHostName
Sets the internal variable
for the host name of the
Vicon RT system. This
variable will be used to
initialize the StreamReader

 15

object.
setRTIPAddress void char * strIPAddy Sets the internal variable

for the IP address of the
Vicon RT system. This
variable will be used to
initialize the StreamReader
object.

setMappingFile void char * strFilePath Sets the internal variable
for the absolute path for
the mapping information.
This variable will be used
to initialize the
MappingInfo object.

initialize bool None Initializes itself and all the
objects it uses. It will
initialize the
StreamReader,
MappingInfo object, and
the MIDIController. This
function will return TRUE if
successful, FALSE
otherwise.

run int None Runs the translator, along
with all subservient objects
(ie. StreamReader). It
returns and integer that
represents a return code.
A return code of 0 means
that the function exited
gracefully.

 16

4. Integration Test Plan

The purpose of the MCM system Integration Test Plan (ITP) is to ensure that the
designs of the modules are compatible. After individual unit testing, the modules will
be brought together and their interfaces and interactions with each other shall be
tested.

Data Sets and Testing Conditions:

Our team made extensive use of .v (pre-recorded motion capture) files and .mcm
(mapping information) files to complete the integration testing of our system. The
.mcm files used in testing were simple mappings of 3-6 rows of mapping data,
usually named a derivative of *test*.mcm. The final testing .mcm file,
complete.mcm, is included with this document. Another testing file, yoyoyo.mcm,
was used to test things related to the entire body part listing. The one .v file we had
to use, hvdemo07.v, included the motion of a person walking in a circle.

The .v file was used by the Vicon Real-time Emulator to feed a stream of data to the
StreamReader module over the network port 800. The StreamReader module then
passed the motion data to the Translator module, which then passed it on to the
MIDIOutput module. The IO module, with the help of the MCMMap module, created
.mcm files, which were in turn read in by the MappingInfo module. The Translator
module used the data structure created by the MappingInfo module.

The MCMMap and MCMTranslate modules were tested separately before they were
brought together on the same machine. The main MCMMap module was integrated
with the IO module by adding the information from the various GUI elements one at
a time until the correct information on the whole was being written to the .mcm files.
A similar yet reverse method was used to read the information from the .mcm file
back into the GUI components for the file-open functionality. The interfaces between
the various MCMTranslate modules were individually tested and integrated into the
system as a whole. First, our team attached the StreamReader module to the
Translate module assuring that data points could be read off the network and
decoded via data structures. By running the StreamReader module and printing out
the data points the connection between these two modules was verified. Next, the
team included the MappingInfo module in the project and initialized the class with
the test mapping (.mcm) file. Queries were made on the MappingInfo object
containing data stored in the mapping file. Finally, the two connections were fused
by obtaining data from the StreamReader object and using the information to make
the proper queries on the MappingInfo object. This gave verification by creating a
MIDI command that could be sent to the MIDI module.

We performed full integration tests by installing both executables on the same
machine and using one program to call the other. We created a .mcm file using
MCMMap, saved it, and then called MCMTranslate. The Real-time Emulator needed
to have been running a .v file at this point to simulate a motion capture. The
StreamReader module also needed to wait for the MappingInfo module to create the
data structure before it could look for the stream data. We tested each data set
multiple times to make sure that the same MIDI output was created for the same .v
file and .mcm file pair.

 17

We need to either move the system to the client machine or acquire more sample .v
files from the client in order to do testing of simple motions and mappings.

Possible Risks/Problems:

The possible problems that may occur once we move the system over to the client
machine involve the individual programs running as stand alone programs outside of
their respective development environments. The team has had trouble running
MCMMap.exe on a machine on which it was not already compiled and running in a
development environment. We found that this was due to MCMMap requiring the
Java Runtime libraries to be present on the host machine to run properly.

Unforeseen problems may also occur once the system must work with the Vicon
hardware as we have as yet only tested it using the Real-time Emulator software.

Due to limitations in the Vicon API, MCMTranslate must be recompiled once the IP
address of the machine the stream is coming from is known. The IP address of this
machine must be hard-coded into our system.

Test Matrix

The following individual test cases were performed in support of the above-
mentioned unit-testing and configuration tests. They supported the overall goal
verifying the system design specifications. The tests conducted were:

Test Name: Map Program
Purpose of Test: To verify proper running of MCMMap
Module Interactions: Map::GUI, Map::IO
Input Specification: Start program
Output Specification: Program loads
Test Environment
Restrictions:

Does not need MCMTranslate present

This is the most simple of the testing procedures, and is provided to ensure that the
method for the user to create mappings is available.

Test Name: GUI
Purpose of Test: To verify functionality of GUI comment of MCMMap
Module Interactions: Map::GUI
Input Specification: User manipulation of all modifiable graphical

elements and text fields.
Output Specification: No error messages upon data entry
Test Environment
Restrictions:

none

There are numerous individual GUI elements in the user interface available. This
includes the text fields used for range entry as well as the drop down menus that
describe the available MIDI commands. Limitations on range as described in the
requirements are implemented in the design and will feature in several iterations of
this particular test.

 18

Test Name: Map IO
Purpose of Test: To verify functionality of IO component of MCMMap
Module Interactions: Map::IO
Input Specification: Save/Load file
Output Specification: Save/Load file (corresponding)
Test Environment
Restrictions:

none

The Input/Output routines must write a properly delimited text file of the mapping
information to disk.

Test Name: Translate Program
Purpose of Test: To verify proper running of MCMTranslate
Module Interactions: Translate::IO/MIDI/StreamReader/Translator
Input Specification: Start program during capture
Output Specification: Program executes during capture, generates sound
Test Environment
Restrictions:

Can only be performed upon the completed testing
and verification of functionality of the individual
modules comprising this portion of the entire
system.

This test should be the final step in integration testing. The mapping element of MCM
exists as its own independent component, able to be used without the presence of
this portion. However, this particular test is the complete run of all the significant
system components that allows the motion capture system users to generate sounds
in real-time.

Test Name: Translate IO
Purpose of Test: To verify functionality of IO component of

MCMTranslate
Module Interactions: Translate::IO/Translator
Input Specification: Load mapping
Output Specification: Build data structure of mapping description for use in

translation
Test Environment
Restrictions:

Must be tested concurrently with translator

The Translator cannot perform any sort of conversion of motion data to sound data
without the presence of the mapping, which serves as the “road map” for the
translation process.

Test Name: Translate MIDI
Purpose of Test: To verify proper operation of the MIDI output

routines
Module Interactions: Translate::MIDI/Translator
Input Specification: MIDI commands
Output Specification: Sounds or modification of current sound from output

device
Test Environment
Restrictions:

This test is performed in conjunction with a MIDI
output device connected to the RT workstation.

 19

The MIDI output routines are provided by a third-party organization, which professes
the completeness and usability of their code.

Test Name: Translator
Purpose of Test: To verify satisfactory operation of the heuristics code

in the translation portion of the system
Module Interactions: Translate::IO/StreamReader
Input Specification: Decoded motion data from StreamReader
Output Specification: Corresponding MIDI command
Test Environment
Restrictions:

none

This test features an individual motion data element’s information causing the
generation of the mapping-defined equivalent MIDI command.

Test Name: StreamReader
Purpose of Test: To verify network operation of the Vicon supplied

motion data reader code
Module Interactions: Translate::StreamReader
Input Specification: RT Emulator or Vicon 8 Camera system motion

output
Output Specification: Readout of coordinates for each point
Test Environment
Restrictions:

A capture (either simulated or real) must be being
performed with the data moving on a closed local
area network; either the Vicon 8 camera system or
its emulator can be used.

 20

5. Tracking and Control Mechanisms

Since the system development for MCM is rather small in comparison to other
software projects, the team as opted not to use conventional tracking and control
mechanisms such as CVS or other code/update repositories.

The benefit of the separation of program elements into two parts, mapping and
translation, and their subsequent breakdown into individual modules, allows each
team member to cover a specific area of detail without saturating his/her workload.

The team website and account at www.gts2k.com/~ics125/ provides a common
area for storage and transmission of all documents, code, and testing information.

The following table provides a listing of how the MCM requirements, as specified in
the Requirements Specification, are satisfied by the design presented in this
document. For further information, refer to the Requirements Specification
Document.

IMPLEMENTATION MAP
REQUIREMENT DESIGN MODULE

3.2 Environmental Characteristics MCM has been designed to run on the
Vicon8 network in a standard Microsoft
Windows NT/2000 operating system
environment.

3.3.1 Correctness All
3.3.2 Reliability All
3.3.3 Robustness All
3.3.4 Performance MCMTranslate (All)
3.3.5 User-friendliness MCMMap::GUI
3.3.6 Verifiability All
3.3.7 Maintainability All
3.3.8 Reparability All
3.3.10 Evolvability All
3.3.11 Reusability All
3.3.12 Portability All
3.3.13 Understandability All
3.3.14 Interoperability All
3.3.15 Productivity MCMMap::GUI
3.3.16 Scalability All
3.3.18 Visibility All
3.4.2 Transfer of Data MCMTranslate::StreamReader
3.4.3 Motion Data Mapping MCMTranslate::Translator
3.4.5 Data Range MCMMap::MapData
3.4.6 Pairing of Data Point Axis with MIDI
Command

MCMMap:MapData

3.4.7 MIDI Command Selection MCMTranslate::MIDIControl
3.4.8 Axis Mapping MCMMap::MapData
3.4.9 Multiple Mapping Configurations MCMMap::IO
3.4.10 Note Velocity MCMMap::MapData,

MCMTranslate::MIDIControl
3.5 UI Model MCMMap (All)

 21

3.8 File Format MCMMap::IO,
MCMTranslate::Streamreader,
MCMTranslate::MappingInfo
MCMTranslate::Translator

 22

6. Modifications to Requirements

For reference and further information, the reader is referred to the Requirements
Document Version 1.1. Changes to the document occurred primarily because of the
ambiguity in the definition “linear mappings” as related to the translation of motion
data to MIDI. Other changes were for clarification and there were also several
cosmetic changes.

Date Version Status/
Action

Revision
By

Comments

4/26/01 1.0 Completed
Requirements
Specification

All The Requirements were submitted and presented
today.

5/17/01 1.1 Added more
detail and
clarification
to the
document.

All ?? Made extensive modifications to Section 3.4
Domain Specific Rules..

?? The Use-Case Scenarios were moved to
Section 3.7, after Section 3.5, which defines
the components discussed in the Use-case
scenarios.

?? Updated Section 6 Test Plan to include
environmental requirements.

?? Added several terms to the glossary.
?? Updated the Section 9 Meeting Minutes to

show the latest Requirements meetings.

 23

7. Meeting Minutes

9.1 - Sunday, 6 May 2001
Evening meeting of Sal, Jimar, and Gene to finish research, work on technical
presentation slides, and begin construction of the design document.

9.2 - Monday, 7 May 2001
Short meeting with Professor Ebert at 12:30pm to discuss preparation for technical
presentation and answer questions about topics to focus on. Sal, Jimar, and Gene
present.

9.3 - Tuesday, 8 May 2001
Morning meeting before class to complete technical presentation slides. Sal, Jimar,
and Gene present.

9.4 - Wednesday, 9 May 2001
Regular weekly meeting in the evening to go over required details for design
document, proceed with individual module designs and separation of tasks. Sal,
Jimar, and Gene present.

9.5 - Saturday, 12 May 2001
Planned afternoon meeting for Jimar and Gene to test Vicon StreamReader code with
RT emulator missed because scheduling conflict.

9.6 - Tuesday, 15 May 2001
Morning meeting to coordinate slides for Design presentation. Sal, Jimar, and Gene
present design concepts for MCM and related technologies in class.

9.7 - Saturday, 19 May 2001
“Online” meetings to coordinate final additions and changes to design document.

 24

8. Glossary (Local to Design Phase)

API
Application Programming Interface – a set of functions that allows the developer to
use the functionality of an existing application. To use the application, the developer
makes the appropriate function calls. The API usually includes documentation that
defines what the functions are, what the parameters are, and what the return values
are.

C3D File Format
The C3D format stores 3D coordinate and numeric data for any movement
measurement, usually used in recording Biomechanics experiments.

GUI
Graphical User Interface

ITP
Integration Test Plan

MIDI
Musical Instrument Digital Interface. MIDI is a standard protocol that was agreed
upon by major manufacturers of Electronic Musical Instruments. It allows
Keyboards, Synthesizers, Computers, Tape Decks and even Mixers & Stage Light
Controllers to talk to each other.

RT Emulator
A software program that reconstructs in real-time a Vicon 8 camera system motion
capture event.

RT Workstation
The Vicon company’s high-powered PC running Windows NT/2000 with Vicon
software that accepts the real-time capture stream on the network and outputs the
current capture to a video display in real time.

TCP/IP
Networking communication protocols for transferring data from one computer to
another. The routable protocol is the standard for the Internet and it ensures
reliable data transfer and congestion control.

 25

9. Revisions

Date Version Status/Action Revision
By

Comments

5/21/01 1.0 Completed
Design
Specification

All The Design was completed and submitted and
today.

6/5/01 1.1 Added more
detail and
clarification to
the document.

All ?? The Introduction was expanded to include
the same introductory material presented
in the Requirements document.

?? The module descriptions were changed to
add more detailed information about their
functionality and their interfaces.

?? Several cosmetic changes were made to
make the document more presentable.

?? Several relevant terms were added to the
glossary.

