
Gestural Control of Music
Using the Vicon 8 Motion Capture System
Christopher Dobrian

University of California, Irv ine
303 Music & Media Bldg., UCI

Irv ine, CA 92697-2775
(1) 949-824-7288
dobrian@uci.edu

Frédéric Bevilacqua
University of California, Irv ine

1002 Health Sciences Road East
Irv ine, CA 92612-1475

(1) 949-824-4104
fbevilac@uci.edu

ABSTRACT
This article reports on a project that uses unfettered gestural
motion for expressive musical purposes. The project involves
the development of, and experimentation with, software to
receive data from a Vicon motion capture system, and to
translate and map that data into data for the control of music
and other media such as lighting. In addition to the
commercially standard MIDI—which allows direct control of
external synthesizers, processors, and other devices—other
mappings are used for direct software control of digital audio
and video. This report describes the design and
implementation of the software, discusses specific
experiments performed with it, and evaluates its application in
terms of aesthetic pros and cons.

Category and Subject Descriptor
Design report on new interface for musical expression: Real-
time gestural control in music.

Keywords
Motion capture, gestural control, mapping.

1. INTRODUCTION
The Vicon 8 motion capture system[1] is recognized to be one
of the best available systems for accurately recording three-
dimensional movement, particularly—but by no means
exclusively—movement of the human body. At the University
of California, Irvine (UCI), a small group of artists and
programmers is working in UCI’s Motion Capture Studio, in
conjunction with the Realtime Experimental Audio Laboratory
(REALab), to develop software for the translation and mapping
of Vicon motion capture data—which is normally used for
animation or for biomechanics research—into control data for
music, as well as for other media such as lighting, digital
audio, and digital video. The working name of this software i s
MCM (Motion Capture Music).

The team is developing MCM concurrently on two

programming platforms. One group is coding it in generic Java
and C++ for optimal portability to any operating system,
translating received motion capture data into directly
transmitted MIDI data. A second group is coding extended
functionality in Max[2]. The Max version of MCM is presently
limited to the Macintosh operating system, but receives the
realtime motion capture data via Open Transport UDP. The
advantage of using Max is that it already provides
comprehensive capabilities for the control of digital audio and
video—via MSP and Jitter—and therefore allows direct
mapping of motion capture data to those media as well as to
MIDI.

The goal of the software development is to create a
straightforward, useful tool for employing gestural motion to
control audio-visual performance media with accuracy and
reliability. Members of the team are conducting experiments
with this type of control, and these experiments are guiding
the software development as it is in progress. What follows is a
report on this work.

2. DATA FROM THE VICON V8 SYSTEM
The details of the Vicon system are adequately described
elsewhere[1,3], so here we discuss only the data it produces.
The data derived from the captured motion are most commonly
saved to disk, as a Vicon-standardized .C3D file. Captured data
files are then normally used as input to an animation program
such as 3D Studio Max for realistic generation of lifelike
animated characters, or used for biomechanical studies of
bodily motion (sports, physical therapy, ergonomics, etc.). In
the .C3D format, each frame of information is represented as a
list consisting of Cartesian x, y, z coordinates in 3D space for
each marker. The Vicon 8 system at UCI reports up to 120
frames per second; more modern Vicon systems boast a much
higher frame rate. The user determines the ordering of the
markers in the list when recording the data.

2.1 Vicon Real-time Data
The Vicon system has recently become of interest for musical
expression because of the availability of the Vicon Real-time
Engine[4], which allows full realtime transmission of the
motion capture data. For this project, Vicon Motion Systems
provided their in-house RTEmulator software, which allows
one to emulate the behavior of the Real-time Engine.
RTEmulator reads data from a .C3D file and transmits it in the
format of the Real-time Engine, allowing simulation and
testing of realtime motion capture without having the Vicon
Real-time Engine itself. Realtime access to Vicon data makes
the system useful as a tool for musical expression.

3. INITIAL DESIGN OF MCM
The initial design[5] for MCM intended to make as
simple—and as simple to use—a program as possible for
mapping motion capture data to musical control data. The
design allows for the user to select a marker (i.e. a position on
the body), a coordinate (x, y, or z), and a range of space to in
which to track that coordinate, and linearly map that data to
any range of MIDI values for any MIDI channel message. The
user can specify as many such mappings as desired. The
intention was to make the most direct possible way for any
motion capture parameter to be used to control a MIDI device.
For more complex mappings, it was assumed that an additional
program would mediate the transmission between MCM and
the MIDI device(s).

Vicon Real-time
or RTEmulator

Optional Additional
Mapping Software

MIDI Device

MCM

Figure 1. Overview of Generic Usage of MCM

3.1 Specifying Mappings and Translating Data
Per this initial design plan, the implementation of MCM
consists of two parts: a user interface for specifying the
desired mappings of marker coordinates to MIDI data, and a
translator that uses those specifications to perform the desired
mappings on incoming motion capture data and transmit the
appropriate MIDI data. These two parts are implemented as
separate programs, called MCMMap and MCMTranslate.

3.1.1 MCMMap
MCMMap provides the user with panels (as many as desired)
for inputting the desired mappings. The parameters to be
specified by the user are marker, coordinate, coordinate range
minimum and maximum, MIDI message type, MIDI range
minimum and maximum, and MIDI channel. Depending on the
type of MIDI message selected, other parameters may appear:
e.g., controller number if a control change message is selected,
velocity and duration if a note message is selected, etc. A
session of such specifications is saved in a plain text file with
a .mcm tag. The .mcm file is used by MCMTranslate to map
motion capture data to MIDI data.

3.1.2 MCMTranslate
MCMTranslate performs four tasks: it receives motion capture
data from Vicon Real-time or RTEmulator, uses a .mcm file of
mapping specifications to translate specific input values into
MIDI messages, transmits the MIDI messages, and schedules
note-off messages in the future to end any note-on messages i t
has transmitted. Since all of the mapping specifications are
made in MCMMap, MCMTranslate requires nothing more of
the user than to start it and select a .mcm file for the translation
of the incoming data.

4. IMPLEMENTATION IN JAVA/C++
A relatively “platform-neutral” version of MCM is being
implemented according to the initial design described above,
using Java for MCMMap and C++ for MCMTranslate. The
intention is for it to be maximally compatible with the
operating system used by the Vicon system itself, Windows
NT/2000, yet written with minimal reliance on OS-specific
functionality, so as to be as easily portable as possible to any
new OS. This implementation was begun by undergraduate
students from the UCI Department of Information and
Computer Science (ICS), Cayci Suitt and Gene Wie, and i s
being completed by ICS students Mark Magpayo and
Maybelle Tan.

5. IMPLEMENTATION IN MAX
The authors are also implementing an extended version of
MCM in the Max programming environment. The Max version
(MCMMax) incorporates a number of extensions to the basic
design that make it more versatile and useful for more complex
mappings of gesture to music. Because Max is an inherently
object-based “patchable” system of modules, MCMMax allows
for easy redirection of input data to different types of
mapping. Because Max already has considerable features for
audio and video—MSP and Jitter—incorporated directly in
the programming environment, it’s a simple matter to create
new modules for controlling these media as needed; the
mapped data can thus control MIDI synthesizers and sound
processors, digital audio, and digital video all within the same
software system.

5.1 Design Extensions in MCMMax
MCMMax extends the initial design by permitting tracking of
more types of input information, selection from a variety of
different mapping schemes, and selection of different
destinations for the mapped data.

5.1.1 Information Derived from the Received Data
The motion capture data received from the Vicon system
consists of x, y, z position values for each marker being
tracked. In addition to the position of any marker in any
dimension, MCMMax allows the user to track other
information: marker velocity in one, two, or three dimensions;
marker acceleration in one, two, or three dimensions; the
distance between any two markers; and the angle formed by
any two or three markers. As with the basic version of MCM,
one can specify a range of input values to track.

Figure 2. Input Selection in MCMMax

5.1.2 Mappings
In addition to the linear mapping used in MCM, MCMMax
also provides the choice of reversed, exponential, logarithmic,
and non-linear (lookup table) mappings. When the user selects

exponential or logarithmic mappings, a new field appears for
entering an exponent or base; when the user selects non-linear
mapping, the user may open a stored lookup table or draw an
arbitrary mapping curve.

5.1.3 Destinations for Mapped Data
In MCMMax, transmitting mapped data as MIDI messages i s
just one of the possible choices of destination. Because of the
ease with which the data can be routed to different subroutines
in Max, the data can just as easily be mapped to serve as
control data for digital audio in MSP or digital video in Jitter.
We have already performed experiments with mapping motion
capture data to MSP parameters (e.g., filter cutoff frequency,
etc.), and will continue to develop a variety of different
mapping modules that can easily be plugged into MCMMax as
new features.

5.1.4 Gesture Detection and Recognition
Some of the research work in the UCI Motion Capture Studio
has focused on the detection of individual gestures within the
stream of motion capture data, and on recognizing particular
kinds of gestures.[3] Such gesture detection has been
demonstrated to be feasible and musically useful, and the
results of those experiments—edge detection in acceleration
curves to detect important changes of gesture (by ICS graduate
student Jeff Ridenour), and principle component analysis to
recognize particular types of gesture (F. Bevilacqua)—may
also be easily encapsulated as plug-ins for MCMMax.

6. AESTHETIC DIRECTIONS
The numerical and musical problems of mapping captured
gestural data to musical control have been discussed in
writings by these authors and others.[3,6,7] We will point out
here the primary challenges in the development of new musical
performances using the Vicon Motion System as input for
realtime gestural control of music.

6.1.1 Performing the Virtual Instrument
A performer of this system directly produces and controls
musical events with no tangible physical interface, and is thus
performing a purely “virtual” instrument. There is no haptic
feedback as there is with any physical device, and no precedent
or restriction guiding or dictating the gesture. These facts can
be viewed as challenges or obstacles to performance of
deterministic composed music, but can be seen as
opportunities for improvisation and for the discovery of
“musicality” inherent in bodily movement. We are thus
interested more in the immanent musicality of the human form
than in a proof of concept of yet another alternative controller.
This pursuit requires that performer(s) be skilled in both
musical improvisation and movement, yet not be tied to
traditional dance or music vocabularies. That is a significant
aesthetic challenge, but one that encourages and requires the
collaboration of composers, programmers, and performers.

6.1.2 Multiplicity of Parameters
A single performer wearing a standard set of thirty markers,
with three coordinates per marker, produces a stream of 90
simultaneous continuous parameters available for musical
control. (To say nothing of other available information such as
velocity, acceleration, distance, angle, etc., or of multiple
performers.) This profusion of control data presents a

management challenge for the composer, and a challenge of the
limitations of awareness for the performer. To solve this
problem by using only a small number of marker coordinates
would be to ignore the unique power and potential of this
system. The opportunity and challenge of this system is to
devise strategies for mapping so very many degrees of freedom
into a meaningfully expressive whole.

6.1.3 Lack of Portability
The Vicon 8 system requires circular placement of its eight
cameras, and takes some time to set up and calibrate, so it i s
not well suited to a traditional proscenium concert situation.
The fact that the Vicon Real-time Engine is a TCP/IP server,
however, means that the animation software, MCM, and any
other performance components need not be in the same
location as the Vicon 8 system. The performer may be in a
remote location, and be seen by the audience only in the form
of an animated, musical avatar. This presents opportunity for
new formats of performance and interactivity.

7. FUTURE USES
The MCM project provides easy mapping of motion capture
data to musical control. This will give Vicon users in the field
of animation the ability to experiment with musical
soundtracks ideas that are directly generated by the same data
as is driving the animation. MCM provides researchers
working on problems of gesture detection and recognition in
the UCI Motion Capture Studio with a modular set of mapping
tools into which they can interject motion analysis
components. MCM makes the Vicon system into an instrument
for musical expression, and gives the composer access to a
remarkable affluence of simultaneous control data all coming
from the bodily motion of a single performer with no physical
interface.

8. ACKNOWLEDGMENTS
This project has been supported by the facilities of the
Realtime Experimental Audio Laboratory and the Motion
Capture Studio at the University of California, Irvine. Vicon
Motion Systems has provided us with their RTemulator
software to assist us in this software development. We acknow-
ledge the contribution of Lisa Naugle to the original design,
the work of programmers Cayci Suitt and Gene Wie in writing
the design specifications with valuable advice and super-
vision by Andre van der Hoek, Ms. Suitt for programming the
original mapping interface, and programmers Maybelle Tan
and Mark Magpayo for their work in completing the mapping
and scheduling software for PC.

9. REFERENCES
[1] Vicon 8 motion capture system,

http://www.vicon.com/entertainment/technology/v8.html

[2] Max/MSP programming environment.
http://www.cycling74.com/products/maxmsp.html

[3] Bevilacqua, F., J.Ridenour, and D. Cuccia, “Mapping
Music to Gesture: A study using 3D motion capture data”,
Proceedings of the Workshop/Symposium on Sensing
and Input for Media-centric Systems, Santa Barbara CA,
2002.

[4] Vicon Real-time motion capture system,
http://www.vicon.com/main/technology/realtime.html

[5] Suitt, C. and G. Wie, MCM Design Document,
http://www.solscope.com/~gwie/ics125/
mcmdes06052001.pdf

[6] Dobrian, C., “Aesthetic Considerations in the Use of
‘Virtual’ Music Instruments” Proceedings of the Work-

shop on Current Research Directions in Computer Music,
Institut Universitari de l'Audiovisual, Universitat
Pompeu Fabra, Barcelona, Spain, 2001.

[7] Wanderley, M. and M. Battier, eds., Trends in Gestural
Control of Music, Paris: IRCAM - Centre Pompidou,
2000.

A demonstration of MCM, including audio-visual examples and explanations, is available online at
http://music.arts.uci.edu/dobrian/motioncapture/

