

INTRODUCING COMPUTER MUSIC IN SECONDARY SCHOOL

 Christopher Dobrian

University of California, Irvine
dobrian@uci.edu

RÉSUMÉ

Actuellement, l’éducation en l’informatique musicale
a lieu presque exclusivement dans les universités, surtout
au niveau du troisième cycle. Cet article propose que telle
éducation puisse, et doive, s’introduire dans l’école
secondaire. La formation en musique et en informatique
peut être combinée de manière à ce que les deux sujets
soient accessibles et engageants, même pour les élèves
qui n’ont pas eu de formation traditionnelle en musique
ou qui ne se croient pas doués en technologie. En rendant
ces matières disponibles à un nouveau groupe d’élèves
plus jeunes, on espère éviter que certains étudiants ne
soient involontairement exclus de ces domaines en raison
du manque d’accès à une formation précoce. Cela à son
tour pourrait contribuer à accroître la diversité dans ces
domaines au niveau postsecondaire. Pour que cette
formation ait lieu, des ressources d’apprentissage de
niveau secondaire qui combinent la musique et la
programmation informatique doivent être développées, et
des enseignants connaissant les deux sujets doivent être
disponibles pour ces étudiants.

Computer music education currently occurs almost
exclusively at the post-secondary level, mostly in
graduate degree programs. This article proposes,
however, that such education can and should begin in
secondary school. Introductory training in music and
computer programming can be combined in such a way
as to make both subjects approachable and engaging,
even for students who lack traditional music training or
who might otherwise think of themselves as not
technologically inclined. Making these topics accessible
to a new constituency of students at a younger age may
help to avoid students’ being unintentionally excluded
from participation in these fields due to lack of access to
early training. That in turn may help to increase diversity
in these fields at the post-secondary level. For such
training to take place, secondary-level learning resources
that combine music and computer programming must be
developed, and teachers with knowledge of both topics
must be available for those students.

1. INTRODUCTION

Computer music study is commonly initiated at the
university level, usually in graduate school. However, it
can and should be introduced at an earlier stage, in high
school and even in middle school. I will explain the

reasons why, and I will propose an approach that provides
knowledge and experience in both music making and
computer coding to students at a young age, preparing
them for better footing in those topics when they pursue
postsecondary studies.

Most secondary schools provide some opportunity for
musical experience (orchestra, concert/marching band,
jazz band, choir), and less frequently some sort of
musical training (instrumental lessons, AP theory), but
almost never any discussion of computer music. By the
same token, many secondary schools provide some
optional opportunities to learn computer programming,
but rarely is such training explicitly linked with sound
and music. At the university level, some undergraduate
programs do exist that focus specifically on computer
music, but because most music curricula are quite full
already with classical music training—instrumental
lessons, chamber ensembles, large ensembles, ear
training, music theory, music history, analysis, literature
surveys, and so on—most music students, even those
majoring in composition, receive little or no computer
music training as undergraduates. Thus, most computer
music education occurs during one’s graduate studies.

Because music and computer programming have
historically been considered separate domains, they are
still taught separately at nearly every level prior to
graduate school. I will explain why combining those
fields at an early stage of education may be preferable.

2. HISTORY

Forty years ago, “computer music” was still largely
experimental, and was taught at only a very few
universities, almost exclusively in graduate-level courses
that included education in digital sampling theory, the
mathematics of digital signal processing and synthesis,
and computer programming of digital audio. Those
courses included no training in music per se; basic
knowledge of music theory, notation, and composition
was assumed, because most such courses were hosted in
the university’s music department. The musicians most
interested in computer music tended to be composers who
had already had some experience with analog electronic
music, or less frequently electrical engineers with an
interest in digital audio. Thus, computer music and
composition (two largely male-dominated areas) became
linked, and computer music often was treated as a

sideline subtopic within the study of composition.
Alternatively, music departments might hire a digital
audio researcher as a somewhat oddball lone member to
represent this burgeoning field. MIDI and digital
synthesizers were very new, as were personal computers,
and were not particularly prevalent, so the hardware for
such courses was usually a timeshared mainframe
computer, and the computation was mostly non-realtime.
In short, computer music equipment and knowledge was
accessible only to advanced students at a research
university, often in a research lab that was tangential to
any academic department. Thus, the content of computer
music education, and the locus of computer music
activity, was established by the inherently elite nature of
the field.

The definition of computer music changed somewhat
in the 1990s with the greater prevalence of personal
computers and speedier processors. Computers are now
the basis of all music recording and production, so the
term computer music includes the use of DAW software,
software synthesizers, and user-friendly applications
running on reasonably affordable laptop computers
supplemented with affordable input control interfaces
(e.g. MIDI controllers) and audio output interfaces. Thus,
computer music activity has been to some extent
“democratized”, and extended beyond academia to
popular musicians and hobbyists. The term computer
music now means different things to different people, and
can have different foci in different institutions and
environments. Likewise, whereas the genre of academic
computer music began, and remains, closely tied to mid-
twentieth century modernism, outside of academia
computer music includes minimalist looping, ambient
music, hip-hop, electronic dance music, and other
popular styles. I personally welcome this artistic and
stylistic diversity, and I hope to see that diversity increase
within academia.

3. DIVERSITY

I have written previously[5] about the value of
diversity in institutions, especially in academia, in the
interest of promoting intellectual “hybrid vigor”. The
expression of diverse viewpoints leads to healthy debate
of new ideas, whereas having all like-minded people
together in a room can lead to ossification of a single
view, stunting growth. If only for that reason alone, I
propose that diversity in computer music is inherently
productive and necessary. For me, an equally strong
reason for promoting diversity is the pursuit of social
justice. In the United States, in many fields, implicit
biases and systemic prejudices historically have
privileged some people, and have tended to discourage or
exclude others, due to their race and/or gender.1

1I recognize that some people deny that this has been the case, but they
are demonstrably wrong. I will not expend the time and space here to
demonstrate that.

Rectifying that wrong is of equal importance to the value
gained by having diverse scholarship and aesthetics in the
field. For both of those reasons—intellectual hybrid vigor
and social justice—it is the responsibility of the current
practitioners in the field to consciously promote greater
diversity in its membership. One way of doing that is to
encourage participation by as many different sorts of
people as possible, namely by providing opportunity and
education to all at an early age.

3.1. The pipeline problem

Youths who belong to a lower economic stratum often
do not have the same access to musical instruments,
music lessons, a personal computer, and after-school
educational activities as their more affluent counterparts
enjoy. Also, from an early age, girls—and often Black
and Latino boys—are subtly and not-so-subtly steered
away from mathematical, scientific, and technical topics,
and also away from building and engineering (tinkering)
pursuits. This early bias, especially in conjunction with
lack of access to learning resources, leads to what has
been termed the “pipeline problem”:2 the pipeline
through which potential women and minority applicants
may get to graduate programs is constricted at many
stages along the way, allowing only a trickle to reach the
destination. This constriction of the pathway to computer
music, the filtering out of certain types of people from the
field, actually starts almost from birth, continues at all
levels of education, and culminates in the job market. The
pipeline problem is only one of the many factors that can
contribute to lack of diversity in a graduate program, but
it is a notable one, and is one that can potentially be
addressed by providing students better access to
computer music education at an earlier age.

But what can a university professor do to address this
problem? University faculty are invariably extremely
busy with the demands of their job: composing and/or
conducting research, running computer music facilities,
mentoring student creative and research projects, staying
abreast of new developments in a rapidly changing field,
and teaching. Even if one has the will to try to ameliorate
the pipeline problem, the prospect of having to take on
new work is discouraging. Reaching younger students
requires extra outreach effort. My own solution has been
to frame educational outreach and development as a
specific research focus.

4. COMMUNITY-BASED RESEARCH

Professors in a research university are often accused
of operating in an ivory tower, undertaking research and
creative activity that appears to have little effect upon, or
relevance to, the surrounding community. In the

2This reference to the so-called pipeline problem is not meant to ignore
the equally serious “trapdoor problem” whereby systemic racism and
sexism in this field causes many people to drop out or be excluded from
(or avoid) the field altogether. Both problems exist and must be
addressed.

University of California system, faculty research that
explicitly addresses community concerns is increasingly
validated and encouraged.

4.1. Outreach

One way that professors can address the pipeline
problem is by leveraging the infrastructure and staff
support of their own institution to offer educational
outreach programs. In my school, with the help of a staff
member from the Outreach office, we have instituted
two-week summer academies in Digital Audio
Production and in Computer Music Programming. In an
effort to promote inclusivity, we offer need-based
scholarships—effectively simply reducing or waiving
tuition for students with demonstrated financial
hardship—so that students from underprivileged areas
are encouraged to participate. In addition to teaching
those summer courses, I have offered weekend
workshops for young student groups (from thoughtfully
selected neighborhoods) so that they may be introduced
to the ways in which computing and music making can
be combined. Thus, the existing facilities and equipment
of the university are used during times when they’re
otherwise unused, and the organization is facilitated by
outreach staff who are happy to assist with new activities
that fit perfectly within their job description and add to
the university’s community interaction. Once the summer
and weekend courses were well established, I was able to
delegate the teaching of those courses to capable graduate
students, providing them with valuable teaching
experience and much-needed summer employment.

4.2. Education research

Short-term outreach programs such as those are
helpful for providing young students with exposure to
computer music and the educational culture of the
university. Their actual educational value is limited,
though, because of their brevity. In order for more
thorough education and deeper involvement to occur, the
teaching really needs to be integrated into the students’
activities on a regular and ongoing basis. This can be in
the form of an after-school class (or club)—hosted either
at the university or at their own school—or in some cases
can even be integrated into their school’s existing
curriculum in math, computing, and music. Establishing
such activities requires coordination with high school
faculty and administrators, a task which again can be
much facilitated by the university’s outreach staff. In my
own department at UC Irvine (a Hispanic-serving
institution), a small team of three faculty members
collaborate with teachers at a local high school in a low-
income primarily Hispanic neighborhood, to organize
additional activities in orchestral music, jazz, and music
technology. In that instance, the work is pro bono, but
again, once established, it can often be delegated to
university students, who enjoy and benefit from having
the teaching experience.

In most university computer music programs,
pedagogy is not a primary research focus, but there’s no
reason it cannot be. I recently have chosen to steer my
own research toward secondary-level pedagogy, with an
aim toward developing and instituting a curriculum of
study that will provide combined training in both music
and computer programming.

As noted above, these two topics are traditionally
treated completely separately until graduate school. In
that way, most musicians come to programming rather
late, and are often intimidated by the learning curve in a
brand-new field of such complexity. Similarly, computer
science and electrical engineering students casually go
through their entire university curriculum of
programming and/or digital signal processing without
ever thinking of the potential musical applications of
what they’ve learned. If students were to gain familiarity
with both fields—music and programming—at an earlier
age, combined in ways that intentionally show the
potential interrelationship, those students will have a
better chance of reaching a higher level of sophistication
eventually.

What should be taught in a curriculum that strives to
provide the basics of both music and programming, and
what tools and resources should be employed? Because
the field of computer music is so broad, and the hardware
and software tools are so varied, and musical stylistic
possibilities are so numerous, there may be many answers
to that question. Even though most students today have
access to computers, they are likely using different
platforms—macOS, Windows, Linux, Chrome—and
they may have limited access to musical instruments,
keyboards, other equipment. Access is often limited by
financial constraints. Thus, in my own pedagogy I am
focusing on a few computer music software tools that are
free, cross-platform, and easy to acquire.

5. AVAILABLE FREE TOOLS

5.1. Programming languages

• Pd (PureData)[9] is a free object-based music-
oriented graphical programming language developed by
Miller Puckette, creator of the ubiquitous (but not free)
Max programming language. It is often cited as a free
Max equivalent. It is not as fully capable as Max, but it is
powerful and has a significant user base and support
community.

• SuperCollider[8] is a free text-based music-oriented
programming language developed by James McCartney
with a significant user base and support community. As a
text-based object-oriented coding language, it may be
useful in teaching concepts of object-oriented
programming, as is JavaScript.

• Sonic Pi[2] is a free, cross-platform high-level text
programming interface designed for realtime live coding
of music. It was designed mindful of a simple learning
curve, for use in education.[1]

• JavaScript[6] is the predominant programming
language for Web development, is free, can be composed
in any text-editor, and can run in any browser. It provides
access to the Web Audio API for handling a variety of
audio operations and the Web MIDI API for handling
MIDI data; these libraries—along with the graphical
capabilities of HTML 5 (and freely available interface-
building libraries such as React)—provide sufficient
tools for making a browser-based music app.

5.2. DAWs

• Audacity[7] is a highly capable cross-platform sound
editor, but lacks many music-specific capabilities
commonly associated with DAWs, and lacks full VST
support. It serves well for viewing sound characteristics
in both the time domain and the frequency domain, and
for teaching audio editing, mixing, and the basics of
audio effects processing.

• Waveform[10] is a free cross-platform DAW with
VST support and a pretty full feature set.

• Reaper[3] is essentially as powerful as a professional
commercial DAW. Although not technically free, it is
low-cost shareware, and the demo version continues to
run with full capability (with only a brief imposed pause
when loading) even after the trial period has expired.3

5.3. Synthesis

• VCV Rack[11] provides a well-conceived digital
emulation of a modular analog synthesizer, retaining
traditional standards such as 1V per octave for pitch,
while also providing MIDI control and other benefits of
digital emulation. Synthesis concepts that may be
difficult to grasp in the abstract, such as low-frequency
modulation, can be introduced both sonically and
visually in VCV Rack before teaching them in a less
visual context like Pd or a text-based context like
SuperCollider or JavaScript.

6. CURRICULUM

The design of a curriculum, and a set of useful
tutorials, that coherently teach both music and computer
programming at an introductory level, is the subject of
my new and ongoing research. There are many possible
approaches to this challenge of teaching the fundamentals
of music and programming simultaneously. What works
best will depend on the orientation and preferences of the
teacher(s), and even more importantly on the students and
the context in which the teaching will occur.

In collaboration with a few of my graduate students,
whose employment was funded by a grant from the
University of California, I have published an online
textbook of sorts, a set of lessons titled simply Computer
Music Programming.[4] It was created for a specific

3I advocate that everyone pay for the shareware they use. The generous
policy of Cockos to leave the Reaper software fully enabled even after

course that I teach, titled Computer Audio and Music
Programming. That course is not actually intended to
teach programming. It is intended for people who already
know how to program in some language, and its main
focus is to teach the principles of music, audio, synthesis,
and processing that a programmer needs to know in order
to program audio and music effectively.

The website demonstrates a modular organizational
scheme consisting of many free-standing lessons,
organized by topic. The approach in designing that site
was that every topic has multiple lessons, and that each
lesson is thought of as a “bite”—a small, concise chunk
of information. Each bite should be manageably small,
and if a bite has other requisite knowledge beyond its own
scope, that knowledge should become its own bite, a
separate lesson. The goal was to arrive at a collection of
lessons—standalone-but-sometimes-interdependent edu-
cational chunks—any one of which could be useful on its
own. A teacher or autodidact can then assemble those
chunks in whatever order they deem appropriate for their
purpose. This idea of treating information in standalone
bites intended for assembly in various configurations is
useful model for conceptualizing a curriculum.

Fortunately, there also already exist a great many
teaching materials and videos freely available. One can
take heart in the fact that much work has already been
done, in the form of online textbooks, tutorials, courses,
YouTube videos, etc. So, one doesn’t need to reinvent the
wheel when it comes to explaining coding concepts and
music concepts to beginners. There are many resources
for the fundamentals of both music and coding. Where
new ideas need to be developed is primarily in the
meeting and merging of the two. The teacher’s task
becomes one of compiling and curating existing
materials, and then devising clever ways to link music
theory and practice to math and coding. Here are just a
few examples of “music meets coding”.

6.1. Music meets coding

• Counting is a crucial part of music composition and
performance. Music is full of instructions like “play this
four times, then play that two times,” or “play this chord
for four measures, then play that chord for two
measures,” or “play seven notes in C major as fast as you
can,” or “the third time this happens, proceed to the next
section.” Counting is such a well-learned procedure, used
dozens of times every day in all sorts of situations, that
we generally don't think about how we do it. The process
of describing exactly how we count, with the intention of
teaching it to a computer, gives the student experience in
formalizing a task such that a computer can carry it out.
Writing a program that counts requires that the student
learn about storing a number in a variable, incrementing
that number, repeated processes (loops), relational
operators (tests), and conditional statements.

the trial period expires does give users the ability to pay at whatever time
they’re able.

• In most musical situation, timing is crucial. Whereas
our counting program would normally run as fast as
possible in a few nanoseconds, for it to be musically
useful we need to introduce the idea of timed counting,
which involves calculating time intervals and scheduling
events with whatever scheduling mechanisms exist in the
programming environment we’re using. That might be
metro, delay, pipe, line, etc. in Max or Pd, or it might be
setTimeout(), setInterval(), setValueAtTime(),
linearRampToValueAtTime(), etc. in JavaScript. All
of this can be made more fun and engaging if the results
are expressed sonically as well as numerically, which is
now possible because we have introduced the capability
for timing and rhythm.

• For music theorists and composers, particularly
when discussing post-tonal music, it’s common to refer
to pitch classes as integers, with C=0, C#(Db)=1, D=2,
etc. And for computer musicians, it’s common to refer to
pitches of the 12-tone equal-tempered scale with their
MIDI equivalent, with middle C=60 and each semitone
±1 from that. But why not introduce the pitch-number
equivalencies immediately when discussing the
fundamentals of music? That makes the pitch
relationships more comprehensible to musicians and
novices alike, and provides the most obvious way to
manage pitches and pitch classes in a computer program.
Combined with our timed counting program, we can now
figure out how to play an ascending and/or descending
chromatic scale, then how to alter that program to
perform a whole tone scale (increment by twos) or
arpeggiate a diminished seventh chord (increment by
threes). Diatonic scales have an irregular pattern of
intervals, usually best implemented by looking up pitches
or pitch classes in a lookup table, thus introducing the
concept of an array, indexing, and modulo arithmetic.

• We all have the apparently innate ability to measure
the amount of time between two events, and then project
that same distance mentally into the future to predict the
next beat, and we can even divide that period of time into
rational fractional parts with remarkable accuracy. Even
though we perceive rhythm and tempo sonically,
viscerally, and intuitively, conceptually rhythm is
inherently linked to math, because it is conceptualized as
divisions of time (as well as groupings/multiplications).
In American English, the names of rhythmic values are
all expressly based upon divisions of a whole unit: whole
note, half note, quarter note, eighth note, etc. Rhythm and
rhythmic notation in Western music have traditionally
been taught through a combination of imitation and
memorization of rhythms and their notated symbolic
representations; however, conceptualizing rhythm as
timepoints on a temporal grid, as in a drum machine or a
DAW, allows one to treat rhythm mathematically and
thus be better able to program rhythms in a computer.

The development of lessons that consciously integrate
both music and coding simultaneously is usually best
done by thinking of a very small musical concept one
wants to convey, and then thinking how you would teach
that to a computer step by step. From that program you

will see the sort of computer programming concepts and
structures that will be necessary, and you begin to
develop a set of programming techniques and their
musical relatives. Conversely, one can also start with a
programming concept and think of a musical use for it.
For example, to demonstrate and employ the terminology
of object orientation, such as class, instantiation,
properties, and methods, one might choose to describe a
musical note as a sound object. Because it is an object (in
the programming sense of the word), it will have
properties, such as pitch, duration, starting time,
instrument, etc., and it may have methods such as play(),
stop(), transpose(), and so on. Multiple instantiations of
the note object class can be used to comprise a musical
melody or phrase (or, for that matter, an entire score),
which may in turn be stored as an array of note objects.

7. CMERG

To focus on this project of developing and
implementing a course of study that integrates music and
programming in new and effective ways, I have
established at my own university a Computer Music
Education Research Group (CMERG). My intention is to
leverage the resources of my own institution—web
hosting, physical facilities, equipment, staff, graduate
students, and colleagues—and to collaborate with local
secondary school educators and their high school
students, trying out new ideas for education.

The goal of the group is to provide new educational
opportunities, especially to students who might otherwise
not receive exposure to one or both of these topics in their
high school. In addition to conveying information, our
goal will be to make these topics fun, engaging, and
welcoming, so that all students will feel encouraged to
pursue whatever interests them. Some students may
develop a particular interest in programming because
they are shown fun ways to use it to make music; others
may develop an interest in music because they’ve been
shown a new way to think about it, relevant to their
existing interest in coding.

Realizing this goal requires compiling and curating
existing educational resources, developing new lessons
that integrate music and coding, collaborating with high
school educators to organize classes or clubs, and then
actually delivering the education. By using free, cross-
platform tools and very inexpensive equipment, we can
make these activities available even to students of limited
financial means.

Because the effort is inherently collaborative, our first
step is organizing the interested parties—university
faculty and students, outreach staff, high school
administrators and teachers, and eventually high school
students—and setting up meetings and shared online
spaces for brainstorming and planning. We welcome as
many group participants as are interested in this topic,
wherever they may be. Because of the ease with which
it’s currently possible to meet virtually and share
information online, a research group like this can easily

have global scope. Thus, we welcome collaborators from
other U.S. universities, and we invite our international
colleagues, too. You are welcome to contact me at the
email address listed in the heading of this article.

8. REFERENCES

1. Aaron, S. « Live Coding Education », The MagPi,
Educator’s Edition, v. 1, Raspberry Pi Press, Cam-
bridge, 2016. < https://sonic-pi.net/files/articles/Live-
Coding-Education.pdf >

2. Aaron, S. Sonic Pi < https://sonic-pi.net/ >

3. Cockos. Reaper. < https://www.reaper.fm/ >

4. Dobrian, C. et al. Computer Music Programming,
online textbook developed at and hosted by the
University of California, Irvine, 2019.
< https://dobrian.github.io/cmp/ >

5. Dobrian, C. and Jones, M. « Intentional Inclusion:
Promoting Diversity in Graduate Study of Music
Technology », Journal SEAMUS, 2016 v. 1 no. 1-2,
Society for Electro-Acoustic Music in the United
States, Beverly Hills, 2016. < https://music.arts.uci.edu/
dobrian/IntentionalInclusion.pdf >

6. ECMA International. JavaScript. < https://developer.
mozilla.org/en-US/docs/Web/JavaScript >

7. Mazzoni, D. and Dannenberg, R. Audacity.
< https://www.audacityteam.org/ >

8. McCartney, J. SuperCollider.
< https://supercollider.github.io/ >

9. Puckette, M. Pure Data. < https://puredata.info/ >

10. Tracktion. Waveform. < https://www.tracktion.com/
products/waveform-free >

11. VCV. VCV Rack. < https://vcvrack.com/Rack >

