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CHAPTER	One	
	

Intervals,	Transformations,	and	Tonal	Analysis	
	

Introduction	
	
Though	transformational	theory	is	by	now	a	familiar	presence	on	the	musicological	
landscape,	ubiquitous	in	conference	programs	and	theoretical	journals,	it	remains	a	
specialist	subdiscipline	within	a	specialist	field,	largely	the	province	of	initiates.	Most	music	
theorists	have	at	least	a	casual	acquaintance	with	transformational	ideas,	but	only	a	
handful	actively	pursue	research	in	the	area;	for	other	music	scholars	(historians,	for	
example),	the	theory	is	surely	a	closed	book.	As	Ramon	Satyendra	has	noted,	this	is	due	at	
least	in	part	to	the	mathematical	aspects	of	the	approach,	which	he	calls	a	“language	
barrier”	that	has	inhibited	“broad-based	critique	and	commentary”		(2004,	99).	While	that	
broad-based	discussion	has	yet	to	emerge,	the	theory’s	reception	among	specialists	has	
moved	into	a	new	critical	phase,	with	certain	of	the	method’s	foundational	assumptions	
being	held	up	to	scrutiny	on	both	technological	and	conceptual	grounds—a	sign	of	the	
theory’s	continuing	vitality.	But	such	revisions	also	raise	a	worry:	as	refinements	to	
transformational	methodologies	become	ever	more	recherché,	the	theory	threatens	to	
leave	behind	a	host	of	scholars	who	never	had	a	chance	to	come	to	terms	with	it	in	its	most	
basic	guise.	This	would	be	unfortunate,	for	transformational	methods,	even	in	their	
simplest	applications,	represent	a	style	of	music-theoretic	thought	of	considerable	power	
and	richness,	and	one	that	is	in	principle	accessible	to	a	wide	range	of	analytically	minded	
musicians.		
	
Thus,	while	this	book	is	primarily	about	the	application	of	transformational	ideas	to	tonal	
phenomena,	I	hope	it	can	also	serve	as	an	accessible	general	introduction	to	
transformational	theory.	The	present	chapter	presents	an	overview	of	the	theory	for	the	
reader	new	to	the	approach	(or	for	those	who	would	like	a	refresher).1	After	a	capsule	
summary	in	section	1.1,	sections	1.2	and	1.3	serve	as	primers	on	the	two	main	branches	of	
transformational	thought:	generalized	intervals	and	transformational	networks.	These	
sections	introduce	what	we	might	call	“classical”	Lewinian	intervals	and	transformations,	
as	formulated	in	David	Lewin’s	Generalized	Musical	Intervals	and	Transformations	
(hereafter	GMIT),	the	foundational	text	in	the	field.	They	also	survey	recent	criticisms	of	
and	revisions	to	Lewin’s	ideas.	Each	section	includes	a	little	model	analysis	of	a	tonal	
passage,	the	first	by	Bach,	the	second	by	Schubert.	The	analyses	are	meant	to	display	the	
theory	in	action	and	to	demonstrate	its	efficacy	in	illuminating	aspects	of	tonal	works,	even	
before	introducing	the	new	technologies	of	this	book.	The	analyses	are	again	in	a	rather	
“classical”	transformational	idiom,	adopting	modes	of	interpretation	common	in	the	
literature.	This	will	allow	us,	in	section	1.4,	to	contrast	such	transformational	approaches	
with	Schenkerian	analysis.		
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1.1	Transformational	Theory	in	Nuce	
	

Transformational	theory	is	a	branch	of	systematic	music	theory	that	seeks	to	model	
relational	and	dynamic	aspects	of	musical	experience.	The	theory	explores	the	manifold	
ways	in	which	we	as	musical	actants—listeners,	performers,	composers,	interpreters—can	
experience	and	construe	relationships	among	a	wide	range	of	musical	entities	(not	only	
pitches).	The	formal	apparatus	of	the	theory	allows	the	analyst	to	develop,	pursue,	and	
extend	diverse	relational	hearings	of	musical	phenomena.	The	theory	articulates	into	two	
broad	perspectives.	One	is	intervallic,	in	which	the	subject	“measures”	the	relationship	
between	two	musical	objects,	as	a	passive	observer.	The	other	is	transformational,	in	which	
the	subject	actively	seeks	to	recreate	a	given	relationship	in	his	or	her	hearing,	traversing	
the	space	in	question	through	an	imaginative	gesture.2	The	conceptual	difference	between	
intervals	and	transformations	is	subtle,	and	some	recent	theorists	have	sought	to	downplay	
it.3	We	will	explore	such	matters	in	more	detail	later.	For	now	we	can	simply	note	that	the	
emphasis	in	both	modalities	is	on	the	relationships	between	musical	entities,	not	on	the	
entities	as	isolated	monads.	Transformational	theory	thematizes	such	relationships	and	
seeks	to	sensitize	the	analyst	to	them.		
	
In	both	the	intervallic	and	transformational	perspectives,	musical	entities	are	members	of	
sets,	while	the	intervals	or	transformations	that	join	them	are	members	of	groups	or	
semigroups.	We	will	discuss	the	italicized	terms	in	the	following	section	(definitions	may	
also	be	found	in	the	Glossary);	readers	need	not	worry	about	their	formal	meaning	for	the	
moment.	Intervallic	structures	are	modeled	via	Generalized	Interval	Systems,	or	GISes,	
which	comprise	a	set	of	elements,	a	group	of	intervals,	and	a	function	that	maps	the	former	
into	the	latter.	Transformational	relationships	are	modeled	by	transformational	networks:	
configurations	of	nodes	and	arrows,	with	arrows	labeled	by	transformations	(drawn	from	
some	semigroup)	and	nodes	filled	with	musical	entities	(drawn	from	some	set).4	Any	GIS	
statement	may	be	converted	into	a	transformational	statement,	a	technological	conversion	
that	also	implies	(in	Lewin’s	thought)	a	conceptual	conversion	from	(passive)	intervallic	
thinking	to	(active)	transformational	thinking.5	The	converse,	however,	is	not	true:	there	
exist	transformational	statements	that	cannot	be	rendered	in	GIS	terms.	The	
transformational	perspective	is	thus	broader	than	the	GIS	perspective.	For	this	reason,	the	
term	transformational	theory	is	often	used,	as	here,	to	encompass	both	modes	of	thought.		
	

1.2	Intervals	
	
1.2.1	GISes		
	
GIS	statements	take	the	form	int(s,	t)	=	i.	This	is	a	mathematical	expression	with	formal	
content,	which	we	will	unpack	in	a	moment.	I	would	like	first,	however,	simply	to	note	that	
its	arrangement	on	the	page	mimics	a	plain	English	sentence:	it	can	be	read	from	left	to	
right	as	a	formal	rendering	of	the	statement	“The	interval	from	s	to	t	is	i.”	We	can	
understand	GIS	technology	as	an	attempt	to	render	explicit	the	conceptual	structure	
underlying	such	everyday	statements	about	musical	intervals.6		
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Figure	1.1	will	help	us	begin	to	explore	that	underlying	conceptual	structure.	The	figure	
shows	our	GIS	formula	again,	now	with	its	various	components	labeled.	The	italicized	
words	indicate	mathematical	concepts.	Here	I	will	present	informal	definitions	of	these	
words,	offering	just	enough	information	so	that	the	reader	understands	their	overall	
structure	and	can	begin	to	appreciate	their	suggestiveness—both	singly	and	in	
combination—as	models	for	intervallic	concepts.	More	detailed	discussions	of	each	term	
may	be	found	in	the	Glossary.		
	

	
Figure	1.1	A	GIS	statement	with	components	labeled.	

	
As	the	figure	shows,	the	elements	s	and	t	are	both	members	of	a	mathematical	set.	For	
present	purposes,	a	set	may	simply	be	understood	as	a	collection	of	distinct	elements,	finite	
or	infinite.	The	elements	are	distinct	in	that	none	of	them	occurs	more	than	once	in	the	set.7	
Lewin	calls	the	set	that	contains	s	and	t	the	space	of	the	GIS,	which	he	labels	S.	The	space	S	
may	consist	of	pitches,	or	pitch	classes,	or	harmonies	of	a	particular	kind,	or	time	points,	or	
contrapuntal	configurations,	or	timbral	spectra—and	so	on.	GISes	thus	extend	the	idea	of	
interval	to	a	whole	host	of	musical	phenomena,	not	just	pitches;	this	is	one	of	the	senses	in	
which	they	are	“generalized.”	Note	that	the	elements	s	and	t	are	given	in	parentheses	in	the	
formula,	separated	by	a	comma.	This	indicates	that	they	form	an	ordered	pair:	(s,	t)	means	
“s	then	t.”	The	ordered	pair	(s,	t)	is	distinct	from	(t,	s).	GISes	thus	measure	directed	
intervals—the	interval	from	s	to	t,	not	simply	the	undirected	interval	between	s	and	t.	For	
example,	measuring	in	diatonic	steps,	the	interval	from	C4	to	D4	is	different	from	the	
interval	from	D4	to	C4:	int(C4,	D4)	=	+1,	while	int(D4,	C4)	=	–1.	This	differs	from	some	
everyday	uses	of	the	word	interval,	in	which	we	might	say,	for	example,	“The	interval	
between	C4	and	D4	is	a	diatonic	step.”	GISes	do	not	model	such	statements,	but	instead	
statements	of	the	form	“The	interval	from	C4	to	D4	is	one	diatonic	step	up	(i.e.,	+1	in	
diatonic	space)”	or	“The	interval	from	D4	to	C4	is	one	diatonic	step	down	(i.e.,	–1	in	
diatonic	space).”		
	
The	element	i	to	the	right	of	the	equals	sign	is	a	member	of	a	group.	Lewin	calls	the	group	of	
intervals	for	a	given	GIS	IVLS.	A	group	is	a	set	(that	is,	a	collection	of	distinct	elements,	finite	
or	infinite)	plus	an	additional	structuring	feature:	an	inner	law	or	rule	of	composition	that	
states	how	any	two	elements	in	the	set	can	be	combined	to	yield	another	element	in	the	set.	
Lewin	calls	this	inner	rule	a	“binary	composition,”	and	we	will	follow	that	usage	here.8	
Groups	underlie	a	great	many	familiar	conceptual	structures.	For	example,	take	the	set	of	
all	integers,	positive,	negative,	and	zero.	As	a	set,	this	is	simply	an	infinite	collection	of	
distinct	entities:	{…,	–3,	–2,	–1,	0,	1,	2,	3,	…}.	But	once	we	introduce	the	concept	of	addition	
as	our	binary	composition,	the	set	of	integers	coheres	into	a	group,	which	we	call	“the	
integers	under	addition.”	Addition,	as	a	binary	composition,	offers	one	way	in	which	we	can	
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combine	any	two	integers	to	yield	another	integer:	given	any	two	integers	x	and	y,	x	+	y	will	
always	yield	another	integer	z.	This	is	called	the	group	property	of	closure:	the	composition	
of	any	two	elements	under	the	binary	composition	always	yields	another	element	in	the	
same	set.		
	
Groups	have	three	other	properties.	First,	they	contain	an	identity	element,	labeled	e	(for	
the	German	word	Einheit).	The	composition	of	e	with	any	other	group	element	g	yields	g	
itself.	In	our	group	of	integers	under	addition,	the	identity	element	is	0:	0	added	to	any	
integer	x	yields	x	itself.	Further,	for	every	element	g	in	a	group	there	also	exists	an	element	
g–1	in	the	group	such	that	when	g	and	g–1	are	combined	e	is	the	result.	The	element	g–1	is	
called	the	inverse	of	g	(g–1	is	read	“g-inverse”).	In	the	group	of	integers	under	addition,	the	
inverse	of	any	integer	x	is	–x	(e.g.,	the	inverse	of	3	is	–3,	as	the	two	of	them	added	together	
yield	0,	the	identity	element).	Finally,	composition	within	any	group	is	associative.	That	is,	
given	three	group	elements	f,	g,	and	h,	then	(f	•	g)	•	h	=	f	•	(g	•	h).9	To	return	once	again	to	
our	example,	addition	of	integers	is	clearly	associative:	for	any	three	integers	x,	y,	and	z,	(x	
+	y)	+	z	=	x	+	(y	+	z).		
	
Mathematicians	study	groups	primarily	for	their	abstract	structure,	a	structure	that	is	
suggested	in	its	most	basic	terms	by	the	four	conditions	outlined	above	(closure,	existence	
of	an	identity,	existence	of	inverses,	associativity).	The	GIS	formulation	rests	on	the	idea	
that	intervals,	at	a	very	general	level,	have	this	same	abstract	structure—they	are	group-
like.	That	is,	the	combination	of	any	two	intervals	will	yield	another	interval	(closure).	Any	
musical	element	lies	the	identity	interval	from	itself	(existence	of	identities).	Given	an	
interval	i	from	s	to	t,	there	exists	an	interval	from	the	to	s	that	is	the	“reverse”	of	i—that	is,	
i–1	(existence	of	inverses).	Finally,	we	recognize	that	intervals	combine	associatively:	given	
intervals	i,	j,	and	k,	(i	•	j)	•	k	=	i	•	(j	•	k).10		
	
Note	that	these	abstract,	group-like	characteristics	do	not	encompass	certain	common	
ideas	about	intervals.	For	instance,	there	is	nothing	in	the	four	group	conditions	that	says	
anything	about	direction	or	distance—two	attributes	often	attributed	to	intervals.	This	is	
one	area	in	which	the	GIS	concept	has	recently	been	criticized.11	Though	it	is	tempting	to	
interpret	the	numbers	that	we	use	to	label	group	elements—like	the	integers	+1,	–5,	and	so	
on	in	a	diatonic	or	chromatic	pitch	space—as	representative	of	distances	and	directions	
(treating	+1	as	“one	step	up,”	and	–5	as	“five	steps	down,”	for	example),	those	
interpretations	are	not	inherent	in	the	abstract	structure	of	the	group.	That	is,	the	group	
itself,	qua	abstract	algebraic	structure,	knows	nothing	of	“one	step	up”	or	“five	steps	down.”	
Instead,	it	knows	only	about	the	ways	in	which	its	elements	combine	with	one	another	
according	to	the	properties	of	closure,	existence	of	an	identity	and	inverses,	and	
associativity.	We	can	conclude	two	things	from	this:	(1)	GISes	are	formally	quite	abstract,	
and	may	not	capture	everything	we	might	mean	by	interval	in	a	given	context;	and	(2)	not	
all	of	the	intervals	modeled	by	GISes	need	to	be	bound	up	with	the	metaphor	of	distance.12	
While	the	distance	metaphor	will	likely	be	quite	comfortable	for	most	readers	in	
discussions	of	pitch	intervals,	it	nevertheless	will	feel	inappropriate	in	other	GIS	contexts—
for	example,	when	one	is	measuring	intervals	between	timbral	spectra,	or	between	
contrapuntal	configurations	in	triple	counterpoint	(à	la	Harrison	1988).13	Indeed,	the	
metaphor	of	distance	will	not	always	feel	apt	in	the	primary	GIS	in	this	book,	introduced	in	
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Chapter	2.14	The	GIS	concept	thus	abstracts	away	from	notions	of	distance,	generalizing	the	
idea	of	interval	to	relational	phenomena	in	which	the	distance	metaphor	might	not	be	
appropriate.		
	
We	are	nevertheless	free	to	add	notions	of	distance	and	direction	to	our	interpretations	of	
GIS	statements,	if	so	desired.	Dmitri	Tymoczko	(2009),	Lewin’s	main	critic	on	this	front,	has	
indicated	how	distance	may	be	reintroduced	into	a	GIS	by	adding	a	metric	that	formally	
ranks	the	distances	between	all	pairs	of	elements	in	the	space	of	the	GIS.	In	practice,	this	
usually	amounts	to	reading	numeric	GIS	intervals—like	+1,	–5,	and	so	on—as	indicators	of	
distance	and	direction,	in	the	usual	arithmetic	sense	(with	–5	larger	than	+1,	and	
proceeding	in	the	opposite	direction).	We	will	not	employ	Tymoczko’s	distance	metric	
explicitly	in	our	formal	work	in	this	study,	but	we	will	often	rely	on	the	idea	implicitly,	
whenever	we	wish	to	interpret	intervals	as	representing	various	distances.15		
	
Groups,	for	all	of	their	abstraction,	nevertheless	remain	suggestive	as	a	model	for	
generalized	intervals.	This	is	because	each	group	has	an	underlying	abstract	structure—or,	
we	might	say	figuratively,	a	certain	“shape.”	This	shape	is	determined	by	the	number	of	
elements	in	the	group	and	the	various	ways	they	combine	with	one	another	(and	with	
themselves).	A	group,	for	example,	may	be	finite	or	infinite.	It	may	contain	certain	patterns	
of	smaller	groups	(called	subgroups)	that	articulate	its	structure	in	various	ways.	A	group	
may	be	commutative	or	noncommutative:	two	group	elements	f	and	g	commute	if	f	•	g	=	g	•	
f;	in	a	noncommutative	group	this	property	does	not	always	hold.16	If	two	groups	are	
isomorphic	they	have	the	same	abstract	structure.	A	GIS	inherits	the	particular	structural	
characteristics	of	its	group	IVLS.	One	way	to	think	of	this	is	that	a	given	intervallic	
statement	in	Lewin’s	model	inhabits	a	certain	conceptual	topography—a	sort	of	landscape	
of	intervallic	relationships	given	shape	by	the	structure	of	the	group	IVLS.	Different	types	of	
interval	may	thus	inhabit	considerably	different	conceptual	topographies,	based	on	the	
structure	of	their	respective	groups	(e.g.,	whether	the	groups	are	finite	or	infinite,	
commutative	or	noncommutative,	articulated	into	subgroups,	and	so	forth).	This	suggests	
that	the	intervallic	experiences	corresponding	to	such	intervals	have	certain	crucial	
differences	in	structure,	differences	embodied	in	the	structures	of	their	respective	groups.	
Such	differences	are	often	interpretively	productive—the	formalism	encourages	us	to	
attend	to	them	carefully,	as	we	pursue	and	extend	any	given	intervallic	statement	within	a	
particular	analytical	context.		
	
Thus	far	in	our	survey	of	GIS	structure,	we	have	two	separate	collections	that	are	as	yet	
entirely	independent:	the	space	S	of	musical	elements	and	the	group	IVLS	of	intervals.	We	
have	not	yet	shown	how	various	intervals	in	IVLS	can	be	understood	to	span	pairs	of	
elements	in	S.	The	leftmost	element	in	the	GIS	formula,	int,	provides	that	connection.	As	
indicated	in	Figure	1.1,	int	is	a	function	or	mapping	(the	two	words	are	synonymous	for	our	
purposes).	A	function	from	a	set	X	to	a	set	Y	sends	each	element	x	in	X	to	some	element	y	in	
Y.	Drawing	on	familiar	schoolbook	notation,	we	write	f(x)	=	y	to	refer	to	the	action	of	
function	f	sending	element	x	to	element	y.	Note	how	the	schoolbook	orthography	exactly	
matches	the	layout	of	our	GIS	statement:	compare	f(x)	=	y	and	int(s,	t)	=	i.	The	element	x	in	
the	statement	f(x)	=	y	is	called	the	argument	of	the	function,	and	the	element	y	is	the	image	
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or	value	of	the	argument	x	under	f.	The	set	X	of	all	arguments	is	called	the	domain	of	the	
function,	while	the	set	of	all	images	in	Y	is	called	the	range.		
	
The	domain	for	our	function	int	in	a	GIS	is	not	simply	the	space	of	musical	elements	S	itself,	
but	the	set	of	all	ordered	pairs	of	elements	from	S.	Our	arguments	are	thus	not	single	
elements	from	S,	but	ordered	pairs	of	the	form	(s,	t).	We	can	see	this	by	comparing	again	
our	two	statements	f(x)	=	y	and	int(s,	t)	=	i;	the	ordered	pair	(s,	t)	is	“in	the	role	of	x”	in	our	
GIS	statement,	not	simply	some	single	element	from	S.	The	set	of	all	ordered	pairs	(s,	t)	is	
labeled	S	×	S	and	is	called	“S	cross	S”	or	the	Cartesian	product	of	S	with	itself.	The	function	
int	sends	each	ordered	pair	to	an	element	in	IVLS.	So,	formally	speaking,	int	maps	S	×	S	into	
IVLS.		
	
As	an	example	of	how	all	of	this	works,	let	us	take	the	two	GIS	statements	suggested	above,	
measuring	the	interval	from	C4	to	D4	(and	the	reverse)	in	diatonic	steps:		
	

int	(C4,	D4)	=	+	1		
int	(D4,	C4)	=	−	1		

	
In	both	GIS	statements,	the	space	S	consists	of	the	conceptually	infinite	collection	of	
diatonic	“white-note”	pitches	(NB,	not	pitch	classes).	The	group	IVLS	is	the	integers	under	
addition,	our	familiar	group	discussed	above.	The	mapping	int	sends	every	ordered	pair	of	
diatonic	pitches	to	some	element	in	the	group	of	integers.	It	sends	the	ordered	pair	(C4,	D4)	
to	the	group	element	+1	in	IVLS,	modeling	the	statement	“The	interval	from	C4	to	D4	is	one	
diatonic	step	up.”	It	then	sends	the	ordered	pair	(D4,	C4)	to	a	different	element	in	IVLS,	–1,	
modeling	the	statement	“The	interval	from	D4	to	C4	is	one	diatonic	step	down.”17	The	two	
intervals,	+1	and	–1,	are	inversionally	related,	indicating	that	int(C4,	D4)	followed	by	
int(D4,	C4)	will	leave	us	back	where	we	started,	with	an	overall	interval	of	0,	as	intuition	
dictates.	This	relates	to	a	general	condition	for	a	GIS,	Condition	(A):	given	any	three	musical	
elements	r,	s,	and	t	in	S,	int(r,	s)int(s,	t)	=	int(r,	t).	That	is,	the	interval	from	r	to	s,	plus	the	
interval	from	s	to	t,	must	equal	the	interval	from	r	to	t.	Thus,	in	our	example	int(C4,	
D4)int(D4,	C4)	=	int(C4,	C4)	=	0.	Or	int(C4,	D4)int(D4,	E4)	=	int(C4,	E4)	=	+2.	A	second	
condition,	Condition	(B),	states	that,	for	every	musical	element	s	in	S	and	every	interval	i	in	
IVLS,	there	exists	exactly	one	element	the	in	S	such	that	int(s,	t)	=	i.18	Again,	a	musical	
context	makes	the	condition	clear:	let	the	element	s	be	the	note	C4	and	the	interval	i	be	
“one	diatonic	step	up.”	Within	the	set	of	all	diatonic	“white-note”	pitches,	there	is	of	course	
only	one	pitch	that	lies	“one	diatonic	step	up”	from	C4,	that	is,	D4.	These	two	conditions	
lend	a	certain	logical	tightness	to	GIS	structure,	providing	only	one	interval	between	any	
two	musical	elements	within	a	GIS.19	This	property	is	called	simple	transitivity.	As	a	result	
of	the	two	conditions,	in	any	GIS	there	will	always	be	exactly	as	many	elements	in	S	as	there	
are	intervals	in	IVLS.	For	example,	in	the	GIS	corresponding	to	pitch	classes	in	12-tone	
equal	temperament,	there	are	12	elements	in	S	(the	12	pitch	classes)	and	12	intervals	in	
IVLS	(the	integers	mod	12).		
	
We	now	turn	to	some	philosophical	and	methodological	matters	raised	by	GISes.		
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1.2.2	GISes	and	Cartesian	Dualism		
	
The	cumbersome	structure	of	GIS	statements	enacts	aspects	of	Lewin’s	critique	of	
Cartesian	dualism.	Note	that	the	main	action	modeled	in	a	GIS	is	the	action	carried	out	by	
the	mapping	int.	It	is	int	that	carries	us	“across	the	equals	sign”	from	the	left-hand	side	to	
the	right-hand	side	of	the	formula	int(s,	t)	=	i.	The	active	nature	of	int	is	especially	evident	if	
we	use	an	arrow	notation	to	rewrite	the	function.	The	schoolbook	function	f(x)	=	y	may	also	
be	written	x–f→y,	showing	that	the	function	f	takes	x	to	y.	Similarly,	we	can	rewrite	the	GIS	
function	int(s,	t)	=	i	as	(s,	t)–int→i	showing	that	int	takes	(s,	t)	to	i.	This	notation	makes	
visually	vivid	the	fact	that	int	is	the	primary	action	involved	in	a	GIS	statement,	capturing	
the	act	of	pairing	two	musical	elements	with	an	interval.	The	relevant	thought	process	
might	be	verbalized	thus:	“I	just	heard	a	C4	and	now	I	hear	a	D4;	the	interval	from	the	
former	to	the	latter	is	one	diatonic	step	up.”		
	
Lewin	characterizes	this	attitude	as	Cartesian	because	it	is	the	attitude	of	someone	
passively	calculating	relationships	between	entities	as	points	in	some	external	space.	The	
action	of	passively	measuring	is	embodied	by	the	mapping	int	itself.	One	might	think	of	int	
as	analogous	to	pulling	out	some	calculating	device	and	applying	it	to	two	musical	entities	
“out	there”	to	discern	their	intervallic	relationship.	The	action	in	question	is	not	one	of	
imaginatively	traversing	the	space	from	C4	to	D4	in	time,	construing	and	experiencing	a	
musical	relationship	along	the	way.	The	GIS	formula	is	further	like	the	Cartesian	mindset	in	
that	it	exhibits	a	certain	fracturing	of	experience,	a	conceptual	split	between	musical	
elements	(the	space	S),	musical	intervals	(the	group	IVLS),	and	the	conceptual	action	(int)	
that	relates	the	two.	The	cumbersome	nature	of	the	GIS	formalism—with	its	three	
components	(S,	IVLS,	int),	all	of	which	need	to	be	coordinated,	and	with	the	action	int	
placing	the	musical	“perceiver”	in	an	explicit	subject-object	relationship	vis-à-vis	the	music	
being	“perceived”—thus	encodes	aspects	of	the	Cartesian	split	between	res	cogitans	and	res	
extensa,	a	familiar	trope	in	Lewin’s	writings.20		
	
We	should	not	conclude	from	this	that	GISes	are	“bad”	and	that	we	should	not	use	them	in	
our	analytical	and	theoretical	work.	Lewin	himself	continued	to	find	intervallic	thinking	
fascinating	and	productive	long	after	GMIT,	as	a	historical	phenomenon,	a	
theoretical/formal	problem,	and	a	mode	of	generating	insights	into	musical	works.21	In	
GMIT	itself	he	also	observes	certain	ways	in	which	transformational	thinking	is	
“impoverished”	in	comparison	to	intervallic	thinking	(GMIT,	245–46).	In	short,	despite	the	
fact	that	the	GIS	formalism	enacts	the	Cartesian	problematic	that	Lewin	so	eloquently	
criticized,	it	is	still	a	productive	and	suggestive	technology	in	many	theoretical	and	
analytical	contexts.22	GIS	models	will	play	an	important	role	in	this	book.		
	
1.2.3	Intervallic	Apperceptions		
	
Lewin	often	refers	to	intuitions	in	his	writings	about	intervals	and	transformations,	but	he	
never	says	exactly	what	he	means	by	the	word.	It	will	be	valuable	for	us	to	spend	a	little	
time	here	thinking	about	the	matter,	as	the	questions	that	it	raises	bear	directly	on	the	
relationship	between	transformational	technology	and	musical	experience.		
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Though	Lewin	gives	us	no	clear	definition	of	what	he	means	by	intuitions,	we	can	infer	two	
crucial	characteristics	of	the	term	as	he	uses	it	in	his	writings:		
	
(1)	His	intuitions	are	culturally	conditioned.		
	
(2)	They	may	be	sharpened,	extended,	or	altered	through	analytical	reflection.		
	
Lewin	states	(1)	explicitly:	“Personally,	I	am	convinced	that	our	intuitions	are	highly	
conditioned	by	cultural	factors”	(GMIT,	17).	By	“cultural	factors,”	Lewin	seems	to	mean	not	
only	differences	between	various	world	cultures—though	he	certainly	does	mean	that—
but	also	historical	cultural	differences	within	the	history	of	European	art	music.	For	
example,	a	sixteenth-century	musician	conditioned	by	ideas	about	modes,	hexachordal	
mutation,	mi-contra-fa	prohibitions,	and	so	forth	would	have	different	intuitions	about	a	
given	musical	passage—say	in	a	motet	by	Palestrina—than	would	a	modern	musician	
conditioned	by	ideas	about	keys,	diatonic	scales,	tonal	modulation,	and	so	forth.23	The	
modern	listener	can	of	course	seek	to	develop	hexachordal	hearings	of	the	music	in	
question,	but	to	that	extent—and	this	leads	to	characteristic	(2)—the	listener	will	be	
modifying	her	or	his	intuitions	(à	la	Lewin)	by	analytical	intervention.	The	general	
pertinence	of	characteristic	(2)	to	Lewin’s	thought	is	manifest	throughout	his	writings,	as	
theoretical	structures	of	various	kinds	are	brought	to	bear	on	various	musical	experiences,	
sharpening,	extending,	or	altering	those	experiences	in	diverse	ways.	Indeed,	Lewin’s	
entire	analytical	project	can	be	understood	as	a	process	of	digging	into	musical	experience	
and	building	it	up	through	analytical	reflection.	Stanley	Cavell,	paraphrasing	Emerson,	
provides	a	very	suggestive	wording	that	we	can	borrow	for	the	idea:	such	work	involves	a	
reciprocal	“play	of	intuition	and	tuition,”	or,	even	more	suggestively,	it	is	a	project	of	
“providing	the	tuition	for	intuition.”24		
	
Lewin’s	intuitions	are	special	in	the	degree	to	which	they	reflect	the	influence	not	only	of	
broad	cultural	and	historical	conditioning,	but	also	of	theoretical	concepts	and	other	
discursive	constructions.25	I	thus	prefer	to	think	of	such	“intuitions”	as	apperceptions:	
perceptions	that	are	influenced	by	past	experience	and	may	involve	present	reflection.26	
The	second	clause	makes	clear	that	such	experiences	are	responsive	to	current	analytical	
contemplation:	a	GIS	or	transformational	statement	need	not	be	a	report	on	some	
prereflective	experience,	but	might	instead	help	to	shape	a	new	experience	(an	
apperception),	or	alter	an	old	one,	through	analytical	mediation.	The	word	intuition,	by	
contrast,	runs	the	risk	of	naturalizing	GIS	and	transformational	statements,	treating	them	
as	unmediated	reports	on	prereflective	(or	at	least	minimally	reflective)	experience.	This	
risk	is	especially	evident	when	a	given	statement	is	made	seemingly	universal	by	locutions	
such	as	“when	hearing	music	x,	we	[NB]	have	intuition	y”—a	rhetorical	device	that	occurs	
with	disconcerting	frequency	in	Lewin’s	writings.	By	hewing	to	the	word	apperception,	I	
instead	hope	to	make	clear	that	the	sorts	of	experiences	explored	in	this	book	are	by	no	
means	universal,	and	will	be	strongly	shaped	not	only	by	one’s	cultural	background	and	
historical	context,	but	also	by	the	concrete	particulars	of	present	analytical	engagement.		
	



	 9	

1.2.4	GISes:	Formal	Limitations		
	
As	noted	above,	the	abstract	nature	of	GISes	allows	them	to	model	a	wide	array	of	
intervallic	phenomena	via	algebraic	groups.	Yet,	despite	this	abstraction,	GISes	are	not	as	
general	as	they	might	at	first	appear,	nor	are	they	applicable	to	all	musical	situations.	GISes,	
for	example,	cannot	model	intervals	in	musical	spaces	that	have	a	boundary	or	limit.	
Consider	an	example	that	Lewin	himself	raises:	S	is	the	space	of	all	musical	durations	
measured	by	some	uniform	unit.	This	space	has	a	natural	limit:	the	shortest	duration	lasts	
no	time	at	all—there	is	no	duration	shorter	than	it.	Now	imagine	that	we	choose	to	
measure	the	interval	from	duration	s	to	duration	t	in	this	space	by	subtracting	s	from	t	
(IVLS	would	then	be	the	integers	under	addition).	For	example,	if	s	is	6	units	long	and	t	is	4	
units	long,	the	interval	from	s	to	t	is	4–6	=	–2.	Formally,	int(s,	t)	=	int(6,	4)	=	–2.	Now	recall	
the	Condition	(B)	for	a	GIS:	given	any	element	s	in	S	and	any	i	in	IVLS,	there	must	exist	
some	the	in	S	such	that	int(s,	t)	=	i.	Let	us	now	set	s	=	0	and	i	=	–2.	There	exists	no	the	in	S	
such	that	int(0,	t)	=	–2.	Such	a	the	would	be	2	units	shorter	than	no	time	at	all.	As	Lewin	
himself	notes,	this	is	an	absurdity	(GMIT,	29–30).	Thus,	the	given	musical	space	of	
durations	under	addition,	though	it	is	musically	straightforward,	cannot	be	modeled	by	a	
GIS.	Similar	problems	arise	with	any	musical	space	that	has	a	boundary	beyond	which	no	
interval	can	be	measured.		
	
This	relates	to	a	more	general	limitation.	Given	Lewin’s	definition,	any	interval	in	a	GIS	
must	be	applicable	at	all	points	in	the	space:	if	one	can	proceed	the	interval	i	from	s,	one	
must	also	be	able	to	proceed	the	interval	i	from	t,	no	matter	what	i,	s,	and	t	one	selects.	This	
limits	GISes	to	only	those	spaces	whose	elements	all	have	uniform	intervallic	
environments.	The	vast	majority	of	familiar	musical	spaces	do	have	this	property.	For	
example,	in	the	space	of	chromatic	pitches,	one	can	move	up	or	down	from	any	pitch	by	+1	
semitone	or	–1	semitone.	By	extension,	one	can	theoretically	move	up	or	down	from	any	
pitch	by	+n	semitones	or	–n	semitones,	for	any	integer	n.	This	is	so	even	when	the	result	
would	be	too	high	or	too	low	to	hear—the	space	is	still	in	principle	unbounded.27	Similarly,	
in	modular	spaces,	such	as	the	space	of	12	pitch	classes,	or	the	space	of	seven	scale	degrees,	
every	element	inhabits	an	identical	intervallic	environment.	Neo-Riemannian	spaces	are	
also	uniform	in	this	sense:	one	can	apply	any	neo-Riemannian	transformation	to	any	major	
or	minor	triad.	Nevertheless,	there	do	exist	spaces	that	do	not	have	this	uniform	quality,	
such	as	the	durational	space	outlined	above,	or	any	number	of	voice-leading	spaces	that	are	
better	modeled	geometrically	(as	discussed	in	Tymoczko	2009).	Thus,	despite	their	
generalized	qualities,	GISes	are	not	as	broad	in	scope	as	they	might	initially	appear	to	be:	
they	only	apply	to	uniform	intervallic	spaces.28		
	
Tymoczko	(2009)	raises	another	important	criticism	of	GISes:	they	do	not	admit	of	
multiple,	path-like	intervals	between	two	entities.	We	will	return	to	this	important	
criticism	in	section	2.3,	in	which	I	will	integrate	Tymoczko’s	path-like	conception	into	the	
GIS	introduced	in	that	chapter.	Tymoczko	also	objects	that	GISes	do	not	model	entities	such	
as	“the	interval	G4→Eb4”	at	the	opening	of	Beethoven’s	Fifth	Symphony.	Instead,	a	given	
GIS	would	model	the	interval	from	G4	to	Eb4	as	an	instance	of	a	more	general	intervallic	
type	that	applies	throughout	the	space:	for	example,	as	a	manifestation	of	the	interval	“a	
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major	third	down.”	Such	an	interval	could	obtain	between	any	other	pair	of	major-third-
related	elements	in	the	space,	say	F4→Db4,	or	B6→G6.	More	generally,	unlike	Tymoczko’
s	“interval	G4→Eb4,”intervals	in	a	GIS	are	not	defined	by	their	endpoints,	but	by	the	
relationship	the	listener	or	analyst	construes	between	those	endpoints,	a	relationship	that	
is	generalizable	apart	from	the	endpoints	in	question.	The	construing	of	that	relationship	is	
modeled	by	the	statement	int(s,	t)	=	i,	which	produces	generalized	interval	i	as	output.	
Tymoczko’s	formulation	provides	a	different	and	useful	perspective,	focusing	more	
attention	on	the	concrete	endpoints	of	a	specific	interval	(s	and	t),	and	less	on	the	ways	in	
which	a	listener	or	analyst	might	construe	the	relationship	between	those	endpoints	as	
some	general	interval-type	i.	But	an	attractive	aspect	of	GIS	theory	is	lost	in	the	process,	to	
which	we	now	turn.		
	
1.2.5	GIS	Apperceptions	and	Intervallic	Multiplicity		
	
GIS	technology	is	responsive	to	the	fact	that	one	will	be	inclined	to	experience	an	interval	
from	G4	to	Eb4	in	diverse	ways	based	on	the	musical	context	within	which	one	encounters	
those	pitches.	There	is	thus	no	single	“interval	from	G4	to	Eb4.”	Imagine	the	succession	G4
→Eb4	in:	(1)	the	opening	of	Beethoven’s	Fifth;	(2)	a	serial	work	by	Schoenberg;	(3)	an	
octatonic	passage	by	Bartók;	(4)	a	pentatonic	passage	by	Debussy	(or,	for	that	matter,	in	a	
Javanese	gamelan	performance	in	slendro	tuning).	These	diverse	contexts	suggest	the	
pertinence	of	various	GIS	apperceptions	for	the	G4→Eb4	succession.	In	the	Beethoven,	the	
pitch	topography	is	diatonic,	and	the	GIS	might	be	any	one	of	a	number	of	diatonic	GISes	
(pitch-based	or	pitch-class-based).29	The	interval	in	Schoenberg	would	likely	suggest	a	
chromatic	GIS,	while	in	Bartók	it	would	evoke	an	octatonic	GIS,	and	in	Debussy	(or	the	
gamelan	performance)	a	pentatonic	GIS;	any	one	of	these	GISes	could	be	pc-	or	pitch-based.	
The	various	GISes	capture	the	ways	in	which	one’s	apperceptions	of	the	G4→Eb4	
succession	might	vary	in	response	to	its	diverse	musical/stylistic	contexts.		
	
This	is	a	rather	obvious	instance	of	what	we	might	call“apperceptive	multiplicity	“in	
intervallic	experience.	Less	obvious,	perhaps,	is	GIS	theory’s	insistence	on	apperceptive	
multiplicity	when	confronting	a	single	interval	in	a	single	musical	passage.	This	suggests	
that	the	interval	in	question	can	inhabit	multiple	musical	spaces	at	once.	Lewin	puts	it	
somewhat	more	strongly	than	I	would:	“we	do	not	really	have	one	intuition	of	something	
called	‘musical	space.’	Instead,	we	intuit	several	or	many	musical	spaces	at	once”	(GMIT,	
250).	Per	the	discussion	in	section	1.2.3	above,	I	would	rephrase	this	as	“we	can	conceive	of	
a	given	interval	in	several	different	conceptual	spaces	when	we	are	in	the	act	of	analytical	
contemplation.	Those	different	conceptions	can	subtly	change	our	experience	of	the	
interval,	leading	to	new	musical	apperceptions.”30		
	
1.2.6	Vignette:	Bach,	Cello	Suite	in	G,	BWV	1007,	Prelude,	mm.	1–4		
	
Figure	1.2(a)	shows	the	first	two	beats	of	the	Prelude	from	Bach’s	Cello	Suite	in	G	major,	
BWV	1007.	An	arrow	labeled	i	extends	from	the	cello’s	opening	G2	to	the	B3	at	the	apex	of	
its	initial	arpeggio.	Figures	1.2(b)–(d)	model	three	intervallic	conceptions	of	i,	situating	it	in	
different	musical	spaces.		
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Figure	1.2(b)	models	i	as	an	ascending	tenth.	This	suggests	the	context	shown	on	the	staff:	
B3	is	nine	steps	up	the	G-major	diatonic	scale	from	G2.	The	figure	shows	this	by	placing	in	
parentheses	the	elements	that	i	“skips	over”	in	the	space	S	of	the	relevant	GIS.	S	in	this	
example	comprises	the	elements	of	the	(conceptually	infinite)	G-major	diatonic	pitch	
gamut,	and	IVLS	is	our	familiar	group	of	integers	under	addition,	hereafter	notated	(ℤ,	+).31	
Given	two	diatonic	pitches	s	and	t	in	G	major,	int(s,	t)	in	this	GIS	tells	us	how	many	steps	up	
the	diatonic	G-major	gamut	the	is	from	s.	The	figure	thus	models	the	GIS-statement	int(G2,	
B3)	=	+9.32		
	

	
Figure	1.2	Bach,	Prelude	from	the	first	suite	for	solo	cello,	BWV	1007:	(a)	the	music	for	
beats	one	and	two,	with	one	interval	labeled;	(b)–(f)	various	GIS	perspectives	on	that	
interval.		
	
The	GIS	of	1.2(b)	does	not	do	full	justice	to	the	harmonic	character	of	i.	If	we	say	that	i	is	a	
tenth,	we	are	likely	not	thinking	primarily	about	a	number	of	steps	up	a	scale,	but	about	a	
privileged	harmonic	interval.	Figure	1.2(c)	provides	one	harmonic	context	for	i,	depicting	it	
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as	spanning	elements	in	a	G-major	arpeggio.	Our	space	S	no	longer	consists	of	all	of	the	
elements	of	the	G-major	diatonic	gamut,	but	just	those	pitches	belonging	to	the	
(conceptually	infinite)	G-major	triad,	that	is:	{…G1,	B1,	D2,	G2,	B2,	D3,	G3,	B3,	D4,	G4,…}.	G2	is	
adjacent	to	B2	in	this	space,	as	is	B2	to	D3,	and	so	on.33	In	this	space,	B3	is	“four	triadic	steps	
up”	from	G2:	that	is,	int(G2,	B3)	=	+4.34		
	
Note	that	the	D3	in	the	opening	gesture	divides	i	into	two	smaller	intervals,	labeled	j	and	k	
on	the	figure;	both	are	“skips”	of	+2	in	the	GIS.	This	arpeggio	space	is	highly	relevant	to	the	
historical	and	stylistic	context	of	the	prelude,	which	imitates	the	French	lutenists’	style	
brisé.	The	intervals	available	to	the	style	brisé	lutenist	within	any	given	harmony	are	exactly	
those	of	the	present	GIS.		
	
Figure	1.2(d)	invokes	a	different	harmonic	space,	one	of	just	intervals	in	which	i	is	the	ratio	
5:2.	This	model	is	suggestive,	given	the	spacing	of	Bach’s	opening	arpeggio:	the	G2–D3–B3	
succession	corresponds	to	partials	2,	3,	and	5	in	the	overtone	series	of	G1.	(In	a	more	
historical-theoretic	vein,	we	might	say	that	the	notes	project	elements	2,	3,	and	5	of	a	
Zarlinian	senario.)	The	group	IVLS	here	differs	in	algebraic	structure	from	those	in	Figures	
1.2(b)	and	(c):	it	is	the	positive	rational	numbers	under	multiplication,	not	the	integers	
under	addition.	This	suggests	that	the	harmonic	interval	of	5:2	inhabits	a	considerably	
different	“conceptual	topography”	than	do	our	stepwise	(and	additive)	intervals	of	+9	and	
+4	in	1.2(b)	and	(c).	We	can	sense	that	difference	in	topography	when	we	recognize	that,	in	
the	arpeggio	GIS	of	1.2(c),	the	interval	from	G2	to	D3	is	the	same	as	the	interval	from	D3	to	
B3:	that	is,	both	represent	an	interval	of	+2.	In	the	just	ratio	GIS	of	1.2(d),	however,	the	
intervals	are	different:	int(G2,	D3)	=	3:2	while	int(D3,	B3)	=	5:3.	The	difference	registers	the	
acoustic	distinction	between	a	just	perfect	fifth	and	a	just	major	sixth.	The	resonant,	
partial-rich	open	strings	of	G2	and	D3	with	which	the	arpeggio	begins	strengthen	the	
relevance	of	the	just-ratio	GIS	here.35		
	
Figure	1.2(e)	shows	the	articulation	of	i	into	its	two	subintervals,	again	labeled	j	and	k,	as	in	
1.2(c).	While	both	j	and	k	were	“skips”	in	1.2(c),	in	1.2(d)	only	k	represents	a	“skip”	in	the	
overtone	series	above	G1;	j	connects	two	adjacent	elements	in	the	series.36	Bach	
emphasizes	the	“gapped”	interval	k,	repeating	it	twice,	as	k–1,	in	the	second	half	of	the	bar.	
This	calls	attention	to	the	“missing”	G3	partial	4	in	the	overtone	series	(note	the	question-
marked	dotted	arrows	on	the	example’s	right	side).	As	Figure	1.2(f)	shows,	this	G3	does	
eventually	arrive	in	m.	4,	at	the	close	of	the	movement’s	opening	harmonic	progression.	
The	G3	bears	a	considerable	tonal	accent	as	a	pitch	that	completes	several	processes	set	in	
motion	in	the	work’s	opening	measures.	Note	that	the	interval	from	D3	to	G3—labeled	l	in	
the	example—is	filled	in	by	step.	This	stepwise	motion	is	the	first	concrete	manifestation	of	
the	scalar	GIS-space	from	Figure	1.2(b),	now	explicitly	coordinating	that	scalar	space	with	
an	interval	from	the	harmonic	spaces	of	1.2(c)–(e).	In	fact,	by	the	end	of	m.	3,	G3	is	the	only	
note	that	has	not	been	heard	in	the	diatonic	G-major	gamut	from	D3	to	C4—it	has	thus	been	
“missing”	in	both	the	scalar	and	harmonic	conceptual	spaces;	its	arrival	fills	a	notable	gap.		
	
One	could	invoke	other	GIS	contexts	for	i	as	well.	One	could	model	i	as	spanning	the	
interval	from	ˆ1	to	ˆ3	in	an	abstract	scale-degree	space,	or	joining	root	and	third	of	the	tonic	
harmony	(the	ideas	are	related,	but	not	identical).	Many	other	intervallic	contexts	for	i	are	
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possible	as	well,	but	not	all	of	them	are	relevant	to	the	opening	bar	of	Bach’s	prelude.	For	
example,	one	could	conceive	i	to	extend	up	16	semitones	in	a	chromatic	pitch	gamut.	This	is	
a	somewhat	strained	understanding	within	the	context	of	m.	1,	which	as	yet	explicitly	
invokes	no	such	chromatic	division	of	pitch	space.	Such	a	space	is	invoked,	however,	at	the	
work’s	climax	in	mm.	37–39,	via	the	cello’s	chromatic	ascent	to	G4,	the	work’s	apex.	Here	it	
is	very	easy	to	hear	the	interval	spanned	from	D3	in	m.	37	to	G4	in	m.	39	in	terms	of	steps	in	
a	chromatic	gamut,	and	to	coordinate	the	steps	in	this	chromatic	GIS	with	those	in	other	
diatonic	and	harmonic	GISes	relevant	to	the	music	in	these	bars.		
	
Such	an	analysis	could	continue,	modeling	other	notable	intervallic	phenomena	in	the	
prelude	and	exploring	their	interactions.	For	present	purposes,	it	is	important	merely	to	
note	the	style	of	the	analysis,	particularly	its	focus	on	multiple	intervallic	interpretations	of	
single	musical	gesture.		
	

1.3	Transformations	
	
	1.3.1	The	“Transformational	Attitude”		
	
As	already	noted,	the	transformational	model	represents	a	shift	in	perspective	from	the	GIS	
view	of	the	passive,	outside	observer	“measuring	intervals”	to	that	of	an	active	participant	
in	the	musical	process.	As	Lewin	puts	it	in	one	of	his	most	frequently	quoted	passages,		
	

instead	of	regarding	the	i-arrow	on	figure	0.1	[an	arrow	labeled	i	extending	
from	a	point	s	to	a	point	t]	as	a	measurement	of	extension	between	points	s	
and	the	observed	passively	“out	there”	in	a	Cartesian	res	extensa,	one	can	
regard	the	situation	actively,	like	a	singer,	player,	or	composer,	thinking:	“I	
am	at	s;	what	characteristic	transformation	do	I	perform	to	arrive	at	t?”	
(GMIT,	xxxi)		

	
Lewin	elsewhere	dubs	this	the	“transformational	attitude,”	and	it	has	become	a	familiar	
part	of	the	interpretive	tradition	of	transformational	theory.	It	is	a	subtle	and	somewhat	
elusive	concept;	I	will	offer	my	own	gloss	on	the	idea	and	its	relevance	to	certain	acts	of	
tonal	hearing	in	section	3.2.1.	For	now,	the	reader	may	simply	conceive	of	transformational	
arrows	as	goads	to	a	first-person	experience	of	various	gestural	“actions”	in	a	musical	
passage,	actions	that	move	musical	entities	or	configurations	along,	or	that	transform	them	
into	other,	related	entities	or	configurations.		
	
While	formal	statements	in	GIS	theory	take	the	form	of	int(s,	t)	=	i,	formal	statements	in	
transformational	theory	are	expressed	using	transformational	graphs	and	networks.	A	
transformational	network	is	a	configuration	of	nodes	and	arrows	whose	nodes	contain	
elements	from	some	set	S	of	musical	elements	(analogous	to	the	set	S	of	elements	in	a	GIS)	
and	whose	arrows	are	labeled	with	various	transformations	on	S.	A	transformational	graph	
resembles	a	transformational	network	in	all	respects	but	one:	its	nodes	are	empty.		
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1.3.2	Transformations	and	Operations		
	
A	transformation	on	S	is	a	function	from	S	to	S	itself:	that	is,	a	mapping	that	sends	each	
element	in	S	to	some	element	in	S	itself.	We	have	already	encountered	functions	in	the	GIS	
discussion	above,	with	the	function	int.	The	transformations	and	operations	in	a	
transformational	graph	or	network	are	also	functions,	but	rather	than	mapping	pairs	of	
elements	to	intervals	(as	int	does	in	a	GIS),	they	act	directly	on	single	musical	entities,	
transforming	them	into	each	other.	Before	exploring	how	this	works	in	practice,	it	will	be	
valuable	to	distinguish	between	a	transformation	and	an	operation.		
	
Let	us	define	S	as	the	seven	diatonic	pitch	classes	in	C	major,	that	is,	S	=	{C,	D,	E,	F,	G,	A,	B}.	
We	now	define	a	transformation	on	S	that	we	will	call	“resolve	to	C,”	abbreviated	ResC.	This	
transformation	sends	every	element	in	S	to	the	element	C.	ResC	is	indeed	a	function	from	S	
to	S	itself:	it	takes	as	input	each	element	of	S,	and	returns	as	output	an	element	of	S.	We	can	
represent	it	by	a	mapping	table,	like	that	shown	in	Figure	1.3(a).37	Figure	1.3(b)	shows	the	
mapping	table	for	another	transformation	on	S,	which	we	will	call	Step:	it	moves	each	
element	in	S	up	one	diatonic	step.		
	
Both	of	these	transformations	can	be	conceived	as	idealized	musical	actions.	But	it	is	only	
when	we	consider	the	entire	mapping	table	that	we	get	a	full	sense	of	just	what	these	
actions	are.	To	see	this,	consider	the	fact	that	both	transformations	have	the	same	effect	on	
the	note	B:	they	both	map	it	to	C.	At	this	local	level,	the	transformations	appear	to	be	
indistinguishable.	But	if	we	perform	the	same	actions	elsewhere	in	the	space,	their	
differences	emerge.	For	example,	Step	maps	D	to	E,	but	ResC	maps	D	to	C;	and	Step	maps	E	
to	F,	while	ResC	maps	E	to	C;	and	so	on.	It	is	only	in	this	broader	context	that	we	can	see	
that	Step	raises	pitches	by	one	step,	while	ResC	resolves	notes	to	C.	These	two	actions	have	
the	same	effect	when	applied	to	B,	but	the	specific	kinetics	they	imply	are	different—ResC	
suggests	a	gravitational	centering	on	C,	or	an	action	that	yields	to	such	gravitation,	while	
Step	suggests	a	more	neutral,	uniform	motion	of	single-step	ascent	anywhere	in	the	space.		
	
Step	also	differs	from	ResC	in	a	more	formal	way.	Every	element	from	S	appears	on	the	
right-hand	side	of	the	table	for	Step	(Fig.	1.3(b)),	while	only	the	element	C	appears	on	the	
right-hand	side	of	the	table	for	ResC	(Fig.	1.3(a)).	While	both	ResC	and	Step	are	
transformations,	Step	is	a	special	kind	of	transformation	that	we	will	call	(after	Lewin)	an	
operation:	an	operation	is	a	transformation	that	is	one-to-one	and	onto.38	If	a	
transformation	is	one-to-one	and	onto,	every	element	in	the	set	appears	once	and	only	once	
as	the	“target”	for	an	arrow	in	the	relevant	mapping	table—in	other	words,	on	the	right-
hand	side	of	Figure	1.3(b).	Operations	thus	have	inverses:	one	can	“undo”	any	operation	
simply	by	reversing	the	arrows	in	its	mapping	table.	Thus,	we	can	define	Step–1,	as	shown	
in	Figure	1.3(c);	as	the	table	indicates,	Step–1	moves	each	element	in	S	one	diatonic	step	
down.	We	cannot,	however,	define	an	inverse	function	ResC–1.	As	shown	in	Figure	1.3(d),	if	
we	reverse	the	arrows	in	the	mapping	table	for	ResC,	only	the	note	C	appears	“at	the	
beginning	of	the	arrows”	in	the	table	(now	on	the	right-hand	side).	Functions	must	be	
defined	on	all	elements	of	their	domain,	but	ResC–1	is	not	defined	on	all	of	the	notes	in	S;	for	
example,	it	is	not	defined	on	D,	as	D	does	not	appear	anywhere	at	the	beginning	of	an	arrow	
on	the	table	for	ResC–1.	Furthermore,	ResC–1	is	not	even	well	defined	on	C,	as	it	seems	to	
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send	that	note	to	seven	different	places;	a	function	must	send	each	element	it	acts	on	to	
only	one	element.	Thus,	ResC	has	no	inverse—it	is	a	transformation,	but	not	an	operation.39		
	
(a)	 (b)	 (c)	 (d)	
ResC	 Step	 Step-1	 ResC-1?	

C⟶C	 C⟶D	 C⟵D	 C⟵C	
D⟶C	 D⟶E	 D⟵E	 D⟵C	
E⟶C	 E⟶F	 E⟵F	 E⟵C	
F⟶C	 F⟶G	 F⟵G	 F⟵C	
G⟶C	 G⟶A	 G⟵A	 G⟵C	
A⟶C	 A⟶B	 A⟵B	 A⟵C	
B⟶C	 B⟶C	 B⟵C	 B⟵C	
	
(e)	 	 (f)	
Step	 Step	 Step2	

C⟶D⟶E	 C⟶E	
D⟶E⟶F	 D⟶F	
E⟶F⟶G	 E⟶G	
F⟶G⟶A									=	 F⟶A	
G⟶A⟶B	 G⟶B	
A⟶B⟶C	 A⟶C	
B⟶C⟶D	 B⟶D	

	
Figure	1.3	Mapping	tables	involving	two	transformations:	ResC,	a	transformation	that	is	not	
an	operation	(i.e.,	that	is	not	one-to-one	and	onto),	and	Step,	a	transformation	that	is	an	
operation.			
	
Transformations	and	operations	can	combine	with	one	another	through	a	process	called	
composition	of	mappings.	This	process	is	illustrated	in	Figures	1.3(e)	and	(f),	which	show	
how	Step	followed	by	Step	yields	a	new	operation,	Step2.	The	new	operation	is	defined	by	
combining	the	mapping	tables	in	1.3(e);	removing	the	middle	column	yields	the	table	in	
1.3(f),	which	shows	the	action	of	Step2.	Through	processes	like	this,	sets	of	transformations	
and	operations	can	be	combined	to	yield	groups,	or	group-like	entities	called	semigroups,	in	
which	composition	of	mappings	serves	as	the	inner	law,	or	binary	composition.	Since	
operations	have	inverses,	they	can	combine	into	groups.	(We	remember	that	each	element	
in	a	group	must	have	an	inverse.)	We	speak	in	this	case	about	a	“group	of	operations.”	
Transformations	that	are	not	operations,	however,	cannot	combine	into	groups,	as	they	do	
not	have	inverses.	They	can	instead	combine	into	a	more	general	structure	called	a	
semigroup.	A	semigroup	is	a	set	of	elements	with	a	binary	composition	like	a	group,	but	one	
that	needs	only	to	satisfy	two	of	the	four	group	properties:	closure	and	associativity.	A	
semigroup	need	not	contain	an	identity	element,	nor	does	each	element	in	a	semigroup	
need	to	have	an	inverse.	We	thus	speak	of	a	“semigroup	of	transformations.”		
	
The	structure	underlying	transformational	systems	is	thus	what	mathematicians	would	
refer	to	as	a	“semigroup	action	on	a	set”	(or	a	“group	action	on	a	set”	if	a	group	of	
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operations	is	involved).	The	set	in	question	is	a	set	S	of	musical	elements	(notes,	
harmonies,	rhythmic	configurations,	etc.),	representatives	of	which	occupy	the	nodes	of	a	
transformational	network.	The	semigroup	of	transformations	then	“acts”	on	this	set,	
modeling	certain	musical	behaviors	that	are	performed	directly	on	entities	in	S,	
transforming	them	one	into	another	along	the	arrows	of	the	network.	The	action	modeled	
by	our	formalism	has	thus	changed	in	a	subtle	way	from	the	GIS	perspective.	There,	the	
action	was	one	of	calculating,	modeled	by	the	function	int,	which	matched	an	ordered	pair	
of	elements	with	an	intervallic	distance.	The	action	enshrined	by	a	transformational	arrow,	
by	contrast,	is	the	active	performance	of	some	characteristic	musical	gesture,	which	
transforms	one	musical	element	into	another.	There	is	no	equivalent	to	int	here:	semigroup	
(or	group)	elements	act	directly	on	the	musical	entities	themselves.		
	
1.3.3	Between	GISes	and	Transformation	Networks		
	
There	is	nevertheless	a	“communication	channel”	between	GISes	and	certain	kinds	of	
transformation	networks.	Specifically,	any	GIS	statement	can	be	refashioned	into	a	
transformational	statement;	such	transformational	statements	can	also	be	turned	back	into	
GISes.	This	process	of	translation,	taking	one	from	an	intervallic	perspective	to	a	
transformational	perspective,	is	a	central	theme	in	GMIT,	as	Klumpenhouwer	(2006)	
persuasively	argues.	A	striking	aspect	of	Lewin’s	project	is	the	way	in	which	the	conceptual	
transition	from	intervallic	to	transformational	thinking	is	mediated	by	the	technology	of	his	
theory—the	technological	transformation	from	a	GIS	perspective	to	a	transformational	
perspective	enacts	formally	the	conceptual	transformation	that	Lewin	wishes	us	to	
undergo	as	we	switch	from	an	intervallic	(Cartesian,	observational)	mode	of	thought	to	a	
transformational	(first-person,	active)	one.	In	the	process,	the	action	of	measuring	(int)	
disappears	and	is	replaced	by	an	imaginative	musical	gesture,	which	the	analyst	is	urged	to	
perform	in	his	or	her	re-creative	hearing.		
	
While	any	GIS	statement	can	become	a	transformational	statement	by	the	appropriate	
formal	and	conceptual	translation,	the	reverse	is	not	true:	not	just	any	transformational	
system	can	be	refashioned	back	into	a	GIS.	Only	certain	kinds	of	transformation	statements	
are	“GIS-able,”	or	conceivable	in	intervallic	terms.	There	are	two	requirements	for	such	a	
conceptual	shift	from	transformations	back	to	intervals.	First,	the	transformations	in	
question	must	be	operations.	To	see	this,	let	us	return	to	Figures	1.3(a)	and	(b).	Note	that	
we	can	conceive	of	the	operation	Step	as	“interval-like.”	First,	there	is	an	interval	that	we	
can	associate	with	the	distance	traversed	by	Step,	namely	“up	one	step”	in	diatonic	pc	
space.	Second,	Step	is	has	an	inverse,	and	is	thus	reversible,	as	we	expect	all	intervals	to	be.	
We	can	thus	reframe	any	transformational	statement	that	we	make	using	Step	as	a	GIS	
statement,	and	vice	versa.	We	cannot,	however,	develop	an	intervallic	interpretation	of	
ResC.	First	of	all,	it	is	very	difficult	to	see	how	we	could	conceive	of	a	single	interval	that	
would	correspond	to	the	action	traced	by	all	of	the	arrows	in	Figure	1.3(a).	In	such	a	case,	
the	interval	from	some	white	note	to	C	would	be	the	same	as	the	interval	from	any	other	
white	note	to	C!	Even	if	we	could	wrap	our	heads	around	such	a	curious	idea,	this	putative	
interval	would	lack	an	inverse,	thus	failing	the	basic	requirement	that	all	intervals	should	
be	reversible.	In	short,	there	are	certain	musical	“actions”	we	can	conceive	of	performing	
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that	cannot	be	interpreted	intervallically;	these	are	the	actions	modeled	by	transformations	
that	are	not	operations.		
	
Second,	in	addition	to	the	requirement	that	a	transformational	graph	or	network	must	
include	only	operations	to	be	interpreted	in	GIS	terms,	that	group	of	operations	must	act	on	
the	elements	in	the	space	S	in	a	particular	way,	which	is	called	simply	transitive	(an	idea	
that	already	arose	in	our	discussion	of	GISes).	A	group	acts	simply	transitively	on	a	set	if,	
given	any	two	elements	a	and	b	in	the	set,	only	one	element	g	in	the	group	takes	a	to	b.	
Simple	transitivity	will	not	be	a	property	of	all	transformation	graphs	or	networks,	even	if	
they	include	only	operations.	Consider,	for	example,	a	transformation	network	with	node	
contents	drawn	from	the	set	of	12	chromatic	pcs,	and	arrow	labels	bearing	a	mixture	of	
atonal	transpositions	(Tn)	and	inversions	(In).	(Klumpenhouwer	networks	are	familiar	
instances	of	this	kind	of	network.)	The	Tn/In	group	does	not	act	simply	transitively	on	the	
12	pcs:	given	any	two	pcs,	there	are	always	two	operations	in	Tn/In	that	can	take	the	first	
pc	to	the	second:	one	transposition	and	one	inversion.	Ramon	Satyendra	clearly	explains	
why	such	a	non-simply-transitive	situation	conceptually	resists	translation	into	intervallic	
terms:		
	

When	reckoning	intervallic	distances	we	intuitively	expect	unique	answers.	It	
is	counterintuitive	to	describe	the	straight-line	distance	between	the	chair	
and	the	table	as	both	two	feet	and	three	feet.	By	requiring	that	a	musical	
system	satisfy	the	simple	transitivity	condition	we	are	assured	that	the	
interval	formed	between	any	two	points	in	a	musical	space	may	be	uniquely	
determined.	If	a	system	is	not	simply	transitive,	it	becomes	counterintuitive	
to	shift	between	transformational	and	intervallic	perspectives.	For	instance	it	
is	intuitive	to	say	that	both	T3	and	I3	transform	C	to	Eb,	but	it	is	
counterintuitive	to	think	of	the	interval	between	C	and	E	as	both	T3	and	I3.	
(2004,	103)		

	
Thus,	GISes	may	be	understood	as	the	conceptual	“flip	side”	of	a	particular	kind	of	
transformational	system:	one	whose	transformations	are	all	operations	that	act	simply	
transitively	on	the	space	S	of	the	network.	The	translation	from	such	a	transformational	
system	into	a	GIS	is	formally	rather	involved,	and	I	will	not	run	through	the	details	here.	
But	the	basic	idea	is	simple.	One	merely	keeps	the	space	S	the	same	from	the	
transformational	network	to	the	GIS,	reinterprets	the	group	of	operations	in	the	
transformational	network	as	the	group	IVLS	in	the	GIS,	and	applies	int	so	that	pairs	of	
elements	and	intervals	match	up	in	agreement	with	the	original	transformational	actions.40		
	
1.3.4	Vignette:	Schubert,	Piano	Sonata,	D.	664,	mvt.	ii,	mm.	1–7		
	
Figure	1.4(a)	shows	the	first	seven	measures	of	the	slow	movement	from	Schubert’s	Piano	
Sonata	in	A,	D.	664.	Figure	1.4(b)	isolates	and	labels	some	three-note	gestures	of	interest.	X	
is	the	piece’s	Hauptmotiv—a	falling	figure	first	heard	in	mm.	1–2;	Y	is	a	one-bar	gesture	
closely	related	to	X,	first	heard	in	m.	5.	Altered	forms	of	both	X	and	Y	appear	in	the	passage:	
X´	changes	the	intervallic	structure	of	X	slightly,	and	T(Y)	is	a	transposition	of	Y.		
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At	the	right-hand	side	of	the	example,	two	cadential	gestures	are	identified,	one	in	the	
soprano	(Cad)	and	one	in	the	bass	(BassCad).	The	phrase	concludes	in	m.	7	with	a	quick	
recollection	of	X,	marked	x.	We	will	be	interested	in	the	way	these	gestures	are	internally	
structured,	as	well	as	in	the	ways	in	which	they	are	transformed	into	one	another.		
	
The	network	of	Figure	1.5(a)	models	pitch	relationships	within	and	between	X	and	X´.	The	
space	S	from	which	the	node	contents	are	drawn	is	the	set	of	diatonic	pitches	(NB)	in	D	
major;	the	transformations	are	steps	up	and	down	the	diatonic	pitch	gamut,	which	we	will	
represent	by	the	integers:	+x	is	x	steps	up	the	diatonic	gamut;	–	x	is	x	steps	down.41	X	
traverses	three	falling	diatonic	steps,	from	B4	to	F#(-3),	while	X´	traverses	four	falling	steps,	
from	B4	to	E4	(–4).	Both	X	and	X´	begin	with	B4-1⟶	A4.	Schubert’s	articulation	makes	these	
gestures	vivid.	The	slurred	appoggiatura	from	B4	to	A4	underlies	the	–1	motion,	pulling	B4	
forward	to	A4,	and	the	three	gently	rebounding	eighth	notes	that	follow	on	A4	(staccato,	
and	slurred	together)	lead	forward	to	the	motives’	concluding	pitches.42	Schubert’s	calm	
repetition	of	the	many	X-related	figures	in	the	movement	encourages	us	to	attend	closely	to	
their	evolving	progress	as	the	piece	unfolds.	(The	“calm	repetition”	comes	to	seem	
unhealthily	obsessive	by	the	time	of	the	climax	in	m.	42.)		
	
Note	that,	despite	the	evident	alteration	of	X’s	internal	structure	in	X´,	the	gestural	motives	
of	–1	and	–3	are	retained	in	the	latter.	Yet	–3	now	acts	as	an	“internal”	transformation,	
rather	than	the	transformation	that	spans	the	entire	gesture,	as	in	X.	For	its	part,	–1	
remains	in	its	original	initiating	position,	linking	the	B–A	appoggiatura	that	plays	such	a	
prominent	role	in	the	movement.	Indeed,	–1	is	the	most	persistent	melodic	figure	in	the	
piece,	initiating	nearly	every	one	of	its	thematic	and	motivic	units.	The	dashed	arrow	in	
1.5(a)	shows	the	influence	of	this	“step	descent”	on	a	slightly	larger	scale,	as	the	agent	that	
transforms	X	into	X´:	the	bottom	pitch	F#4	of	X	is	bumped	down	via	–1	to	produce	the	E4	
that	concludes	X´.43		
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Figure	1.4	Schubert,	Piano	Sonata	in	A,	D.	664,	mvt.	ii,	Andante:	(a)	mm.	1–7;	(b)	some	
gestures	of	interest	in	these	bars.			
	
Figure	1.5(b)	shows	transformational	relationships	within	and	between	the	two	Y-forms.	
The	initiating	–1	from	X	and	X´	remains.	In	Y	it	joins	B4	and	A4,	as	in	the	X-forms.	In	T(Y),	
however,	it	joins	F#4	and	E4,	the	pitches	connected	by	the	dashed	–1	arrow	in	1.5(a),	
making	explicit	the	connection	between	the	–1	arrow	linking	X	and	X´	and	the	appoggiatura	
incipits	of	X	and	Y.	The	other	two	gestural	arrows	in	the	Y-forms	reverse	the	remaining	two	
gestures	in	X:	while	the	latter	contains	–2	and	–3,	the	Y-forms	contain	+2	and	+3.	The	sense	
of	a	change	of	direction	in	the	Y-forms	is	reflected	in	other	parameters	as	well,	as	we	will	
see	presently.		
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Figure	1.5	Diatonic	pitch-space	networks	of	the	gestures	in	Figure	1.4(b).				
	
As	shown	by	the	dashed	arrow	in	1.5(b),	–3	is	the	transformational	agent	that	takes	Y	to	
T(Y).	Like	–1,	which	took	X	to	X´,	–3	is	also	present	locally	in	both	X	and	X´.	The	–3	arrow	in	
X	connects	the	same	two	elements	connected	by	the	dashed	–3	arrow	in	1.5(b):	B4	and	F#4.	
The	dashed	arrow	in	1.5(b)	leads	not	from	last-note	to	last-note,	as	in	1.5(a),	but	from	first-
note	to	first-note.	Rather	than	merely	affecting	one	note,	it	serves	to	transpose	all	of	Y	into	
T(Y).	Thus,	while	–1	acts	as	an	internal	transformation	in	X	and	as	a	single-note	
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transformation	between	X	and	X´,	–3	acts	as	a	spanning	transformation	in	X	and	as	an	agent	
of	wholesale	transposition	between	Y	and	T(Y).		
	
Figure	1.5(c)	shows	the	gestural	kinetics	of	Cad,	which	includes	the	same	three	
transformations	as	Y	and	T(Y),	–1,	+2,	and	+3,	though	in	a	different	order.	For	the	first	time,	
–1	does	not	initiate	the	gesture,	but	terminates	it.	The	reversal	is	appropriate	for	a	cadence.	
The	sense	of	reversal	is	heightened	by	the	presence	of	x	(the	mini	form	of	X)	at	the	end	of	
the	phrase,	turning	the	movement’s	initiating	gesture	into	an	agent	of	closure.	Cad	also	
reverses	previous	material	in	a	more	formal	sense:	it	is	a	retrograde	inversion	of	Y	and	
T(Y).	The	diatonic	pitch-space	operation	that	takes	T(Y)	to	Cad	is	retrograde-inversion-
about-F#4.	F#4	is	both	the	initiating	pitch	in	T(Y)	and	the	cadential	pitch	in	m.	7;	the	
inversional	balance	around	F#4	strengthens	its	role	as	a	point	of	temporary	cadential	
repose.	Cad	is	the	first	gesture	to	begin	with	an	ascent,	as	well	as	the	first	to	depart	from	
the	articulative	pattern	of	X:	it	is	fully	legato,	covered	by	a	single	slur,	and	linked	by	
ornamental	connectives	between	its	nodal	points.		
	
Of	the	three	transformations	in	X,	only	–1	does	not	appear	in	positive—that	is,	ascending—
form	in	the	melodic	gestures	of	Figures	1.5(b)	and	(c).	It	does	appear	in	ascending	form	in	
the	bass,	however,	as	shown	in	1.5(d).44	Moreover,	the	motivic	A–B	dyad	is	reversed	here.	
Until	this	point,	B	has	always	proceeded	to	A	via	–1.	BassCad	now	retrogrades	this	crucial	
gesture,	taking	A	to	B	via	+1.	The	sense	of	cadential	retrograde	interacts	nicely	with	the	
comments	just	made	about	Cad’s	various	reversals.45	While	Cad	exhibits	an	inversional	
relationship	with	the	Y-forms,	BassCad	exhibits	an	inversional	relationship	with	X.	Minus	
signs	in	X	are	replaced	by	pluses	in	BassCad,	as	X’s	falling,	initiating	gesture	is	transformed	
into	a	rising,	cadential	bass	figure.		
	
These	pitch	and	contour	relationships	interact	compellingly	with	durational	aspects	of	the	
music.	Some	of	these	interactions	are	shown	in	Figure	1.6.	The	contents	of	the	nodes	in	
Figures	1.6(a)–(d)	and	(f)	are	ordered	pairs	of	the	form	(pitch,	duration),	where	duration	is	
the	note	value	corresponding	to	the	length	of	time	the	given	pitch	persists	(either	literally	
or	implicitly)	in	the	music.46	The	transformational	labels	are	also	ordered	pairs	in	which	
the	first	element	is	a	diatonic	pitch	interval	(as	in	Figure	1.5)	and	the	second	is	a	durational	
transformation.	In	the	examples	in	the	left	column	(1.6(a),	(c),	and	(e)),	the	durational	
transformations	are	rational	numbers	indicating	proportions.	For	example,	the	
proportional	transformation	2	in	1.6(a)	takes	the	opening	quarter	note	to	the	following	half	
note;	the	proportional	transformation	1/2	in	1.6(c),	on	the	uppermost	arrow,	takes	the	
opening	quarter	note	to	the	concluding	eighth	note;	and	so	on.	In	the	examples	in	the	right	
column	(1.6(b),	(d),	and	(f)),	the	durational	transformations	are	additive,	adding	or	
subtracting	note	values	in	the	intuitive	way	(e.g.,	half	–	quarter	=	quarter).47	The	two	
different	methods	of	transforming	durations	offer	different	perspectives	on	the	gestures.	In	
X,	for	example,	the	successive	durations	increase	by	different	sized	proportions	(2	and	1-
1/2)	as	shown	in	1.6(a),	while	the	additive	increases,	shown	in	1.6(b)	are	by	the	same	
amount	(an	added	quarter	in	each	case).	The	conceptual	and	experiential	differences	
between	the	two	species	of	rhythmic	transformation	are	also	reflected	in	their	differing	
group	structures:	the	integers	under	addition	(in	the	additive	rhythmic	transformations)	
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vs.	the	nonzero	rational	numbers	under	multiplication	(in	the	proportional	rhythmic	
transformations).		
	

	
	
Figure	1.6	Networks	of	pitches	and	durations	for	the	Schubert	Andante.	Durational	
transformations	in	(a),	(c),	and	(e)	are	proportional,	while	those	in	(b),	(d),	and	(f)	are	
additive.				
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These	dual	transformation	systems	reveal	interesting	correspondences	between	pitch	and	
rhythm	in	the	passage.	Note	first	that	for	all	descending	pitch	motions,	durations	increase;	
for	all	ascending	pitch	motions,	durations	decrease.	The	connection	is	suggestive	of	a	
metaphorical	correspondence	between	durations	and	weight,	with	the	longer,	“heavier”	
durations	at	the	bottoms	of	the	gestures.	The	aptness	of	the	metaphor	is	especially	evident	
in	the	Y-forms:	the	gesture	flicks	upward	at	the	last	moment	to	catch	the	eighth	note,	which	
floats	up	like	a	helium	balloon.	X,	by	contrast,	constantly	sinks,	as	note	values	gradually	
increase	in	length	and	heft.48	Figure	1.6(e)	compares	the	X-	and	Y-forms	in	this	regard,	
showing	the	proportional	relationships	between	their	respective	elements.	The	vertical	
arrows	show	the	alteration	of	each	successive	element	in	the	three-note	gestures.	Pitch	one	
is	not	altered	at	all;	it	remains	a	quarter	in	both	X	and	Y	(durational	proportion	1).	Pitch	
two	is	then	slightly	shortened	by	the	proportion	3/4—a	proportion	made	evident	by	the	
repeated	eighth	notes	(four	in	X,	three	in	Y)—while	the	third	pitch	is	shortened	drastically,	
by	1/6.	The	rightmost	events	in	each	gesture	are	thus	at	the	durational	extremes	of	the	
network.	The	result	is	a	net	decrease	in	duration	across	the	span	of	Y,	reflected	by	the	
arched	1/2	arrow	along	the	bottom	of	the	example,	as	opposed	to	a	net	increase	in	X,	the	3	
in	the	upper	arched	arrow.	Figure	1.6(e)	provides	a	rich	sense	of	the	ways	in	which	Y	“pulls	
up	short”	in	comparison	to	X.	The	proportional	relationship	of	X	to	Y	is	palpable	to	both	
performer	and	listener;	it	corresponds	to	the	increase	in	harmonic	rhythm	in	mm.	5–6	and,	
ultimately,	to	the	early	arrival	of	the	cadence	on	beat	three	of	m.	7.49		
	
There	are	other	compelling	correspondences	in	the	examples.	For	example,	the	–3	gesture	
that	links	B4	and	F#4	in	X	is	not	only	inverted	in	pitch	space	in	Y’s	A4–D5;	it	is	also	inverted	
in	durational-proportion	space.	That	is	(+3,	1/3)	in	1.6(c)	is	the	formal	inverse	of	(–3,	3)	in	
1.6(a).50	Note	also	that,	just	as	BassCad	is	an	inversion	of	X	in	pitch	space,	it	is	also	an	exact	
inversion	of	X	in	additive	duration	space.	The	arrow	labels	in	1.6(b)	are	replaced	with	their	
formal	inverses	in	1.6(f):	to	turn	the	transformations	in	1.6(b)	into	those	of	1.6(f),	one	
needs	merely	to	reverse	the	pluses	and	minuses	for	both	pitches	and	durations.	BassCad	
thus	inverts	X	as	a	complete	pitch/time	gesture.	This	observation	interacts	suggestively	
with	BassCad’s	role	as	a	textural	inverse	of	X	(bass	rather	than	melody)	as	well	as	a	
syntactic	inverse	(a	cadential	rather	than	initiating	gesture).		
	
1.3.5	Comment		
	
The	analyses	of	sections	1.2.6	(Bach)	and	1.3.4	(Schubert)	have	demonstrated	that	GIS	and	
transformational	methodologies,	even	in	their	current	state,	make	available	suggestive	
insights	into	tonal	music—insights	that	differ	from	those	generated	in	other	analytical	
approaches.	Further,	those	insights	in	no	way	call	into	doubt	the	tonal	status	of	the	music.	
Yet,	while	tonal	aspects	of	the	two	works	were	discussed	in	informal	ways	in	the	analyses	
(through	references	to	things	like	tonics,	dominants,	and	cadences),	the	formal	apparatus	
of	the	analyses	did	not	model	those	ideas	in	any	direct	way.	This	was	especially	evident	in	
the	Schubert	analysis,	which	made	no	attempt	to	explore	the	subtle	interpenetration	of	D	
major	and	B	minor	that	characterizes	the	movement’s	harmony.	As	Peter	Smith	(2000)	has	
noted,	the	relationship	between	the	pitches	B	and	A	is	especially	striking	in	this	regard—
their	status	relative	to	one	another,	as	either	stable	or	decorative	pitches,	depends	heavily	
on	tonal	concepts.	Consider	the	opening	six-three	sonority	{D,	F#,	B}.	In	the	context	of	the	



	 24	

opening	bar,	it	functions	as	a	tonic	D	chord	subjected	to	a	contrapuntal	5–6	displacement.	
But,	as	Smith	notes,	it	also	carries	hints	of	B-minor	in	first	inversion—hints	that	connect	
both	to	the	concluding	moments	of	the	previous	movement,	and	to	later	events	in	the	
Andante	(such	as	the	root	position	B-minor	chord	in	mm.	10–11).	The	subtle	shift	of	
hearing	that	Smith	notes	in	regard	to	the	opening	six-three	is	a	characteristically	tonal	
effect,	but	one	that	our	transformational	methodology,	in	its	current	state,	cannot	capture.	
The	development	of	the	apparatus’s	tonal	sensitivity	is	the	work	of	Chapters	2	and	3.		…	
	
Notes	
	
1.	The	discussion	here	complements	the	fine	introductions	to	the	theory	from	Satyendra	
(2004)	and	Michael	Cherlin	(1993).		
	
2.	As	Henry	Klumpenhouwer	puts	it,	transformations	model	“moments	of	action	carried	out	
by	and	within	the	analyst”	(2006,	278).		
	
3.	See,	for	example,	Hook	2007b,	172–77.	The	distinction	between	the	intervallic	and	
transformational	perspectives	was	of	central	importance	to	Lewin,	forming	part	of	a	
general	critique	of	Cartesian	views	of	musical	experience,	as	discussed	in	section	1.2.2	(see	
also	Klumpenhouwer	2006).		
	
4.	Given	the	theory’s	emphasis	on	relationships	over	isolated	musical	elements,	the	
technical	emphasis	in	the	discourse	is	typically	on	groups	and	semigroups,	basic	concepts	
from	abstract	algebra.	Transformational	theory	is	thus	an	algebraic	music	theory.	Recent	
developments	in	geometrical	music	theory—see,	for	example,	Callender,	Quinn,	and	
Tymoczko	2008—represent	a	departure	from	this	algebraic	foundation.	Though	such	
geometrical	approaches	are	sometimes	considered	subsets	of	transformational	theory	writ	
large,	I	will	limit	the	term	transformational	here	to	algebraic	approaches.		
	
5.	Klumpenhouwer	(2006)	describes	the	conceptual	transition	from	intervallic	to	
transformational	thinking	as	the	general	theme	of	GMIT.			
	
6.	Whether	GISes	succeed	fully	in	this	regard	is	a	question	to	which	we	will	return.		
	
7.	A	set	in	which	elements	appear	more	than	once	is	called	a	multiset.	Multisets	have	music-
theoretical	applications,	but	we	will	not	explore	them	in	this	study.		
	
8.	Most	mathematicians	call	Lewin’s	“binary	composition”	a	group	operation	or	binary	
operation.	Lewin,	however,	somewhat	idiosyncratically	reserves	the	word	operation	for	a	
different	formal	concept,	as	we	will	see,	thus	making	binary	composition	preferable	in	this	
context.		
	
9.	The	symbol	•	here	is	a	generic	symbol	for	the	binary	composition	in	any	group.	When	the	
idea	of	group	composition	is	understood,	such	symbols	are	sometimes	eliminated.	In	that	
case,	our	associativity	notation	would	look	like	this:	(fg)h	=	f(gh).		
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10.	See	GMIT,	25–26.		
	
11.	Tymoczko	2008	and	2009.		
	
12.	As	Rachel	Hall	puts	it,	“GISes	can	express	notions	about	distance,	but	are	not	forced	to	
do	so”	(2009,	209).		
	
13.	Cf.	Hall	2009,	208–9.		
	
14.	That	GIS,	which	calculates	intervals	between	qualitative	tonal	scale	degrees,	involves	a	
group	of	intervals	that	might	better	be	understood	as	comprising	familiar	intervallic	
qualities	rather	than	distances,	such	as	the	quality	of	a	minor	third,	as	opposed	to	that	of	an	
augmented	second.	The	distance	metaphor	is	especially	inapt	in	connection	with	certain	
exotic	interval	types	that	we	will	explore	in	sections	2.5	and	2.6.	
	
15.	Edward	Gollin	(2000)	explores	another	model	for	distances	in	a	GIS,	measuring	word	
lengths	in	the	elements	of	the	intervallic	group.	In	the	group	of	neo-Riemannian	operations,	
for	example,	the	word	PLP,	of	length	3,	is	longer	than	the	word	RL,	of	length	2.	A	given	
group	admits	of	multiple	distance-based	interpretations,	based	on	which	group	elements	
are	chosen	as	unitary	(words	of	length	1	)	via	the	formalism	of	group	presentation,	as	Gollin	
demonstrates.	
	
16.	Two	familiar	noncommutative	groups	in	music	theory	are	the	group	of	transpositions	
and	inversion	from	atonal	theory,	and	the	group	of	neo-Riemannian	operations.	In	the	
former	group,	it	is	not	generally	true	that	Tm	followed	by	In	is	the	same	as	In	followed	by	Tm.	
For	example	T3	–then	I2	equals	I11,	while	I2-then-T3	equals	I5.	In	the	neo-Riemannian	group,	
given	operations	X	and	Y,	it	is	not	generally	true	that	XY	=	YX.	for	example,	PL	≠	LP,	RL	≠	LR,	
PR	≠	RP,	and	so	on.	
	
17.		The	locations	“one	diatonic	step	up”	and	“one	diatonic	step	down”	evoke	ideas	of	
distance	and	direction,	suggesting	the	pertinence	of	Tymoczko’s	distance	metric	to	this	
particular	GIS.	
	
18	Conditions	(A)	and	(B)	appear	in	the	formal	definition	of	a	GIS	in	GMIT,	26.	
	
19.	To	be	clear,	there	is	only	one	interval	between	two	musical	entities	within	a	single	GIS.	
As	discussed	in	section	1.2.5,	GIS	methodology	rests	on	the	idea	that	there	is	in	fact	an	
indeterminate	multiplicity	of	possible	intervals	between	two	musical	entities.	That	
multiplicity	arises	not	within	a	single	GIS,	but	via	the	multiple	potential	GIS	structures	that	
may	embed	the	two	elements	in	question.	
	
20.	The	relevant	philosophical	matters	are	penetratingly	treated	in	Klumpenhouwer	2006.	
On	the	problematics	of	the	subject-object	relationship	in	passive	musical	perception,	see	
Lewin’s	well-know	phenomenology	essay	(Lewin	2006,	Chapter	4).	
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21.	Lewin	published	three	extensive	articles	specifically	on	GISes,	not	transformational	
systems,	after	GMIT:	Lewin	1995,	1997,	and	2000–2001.	
	
22.	My	ideas	on	these	matters	were	clarified	through	conversation	with	Henry	
Klumpenhouwer.	My	view	differs	slightly	from	Klumpenhouwer’s	published	comments,	in	
which	he	states	that	Lewin	wants	us	to	“replace	intervallic	thinking	with	transformational	
thinking”	(2006,	277).	I	feel	that	Lewin’s	ethical	directive	in	GMIT	is	not	quite	this	strong–
that	he	wants	us	not	to	replace	intervallic	thinking	but	to	become	more	aware	of	its	
Cartesian	bias,	and	to	be	self-conscious	about	that	bias	whenever	“thinking	intervallically”	
in	some	analytical	context.	
	
23.	Cf.	the	discussions	of	hexachordal	versus	tonal	perceptions	in	Lewin	1993,	48n15	and	
Lewin	1998b.	
	
24.	Cavell	1999,	236	(“a	play	of	intuition	and	tuition”)	and	Cavell	2002,	section	4	
(“providing	the	tuition	for	intuition”).	For	Emerson’s	original	quote	see	Emerson	1993,	27.	
	
25.	As	Henry	Klumpenhouwer	notes,	“In	distinction	to	other	uses	of	the	term,	Lewin’s	
intuitions	have	some	conceptual	content”	(2006,	278n3).	
	
26.	In	this	book	I	will	understand	apperceptions	loosely	in	William	James’s	sense,	as	
experience	colored	by	“the	previous	contents	of	the	mind”	(1939,	158).	Such	apperceptions	
may	involve	conscious	reflection,	or	they	may	not.	For	example,	one’s	past	experiences	with	
a	certain	musical	idiom	will	strongly	color	one’s	current	and	future	musical	experiences	
with	music	in	that	idiom,	whether	one	has	consciously	reflected	on	the	idiom	or	not.	
Apperceptions,	thus	conceived,	are	simply	current	experiences	under	the	influence	of	past	
experience,	and	open	to	present	reflection.	This	departs	from	certain	philosophical	
understandings,	in	which	conscious	reflection	is	a	necessary	component	of	all	
apperceptions.		
	
27.	To	bound	it,	one	would	need	to	assert	a	specific	high	pitch	beyond	which	one	cannot	
progress	up	by	one	semitone,	and/or	a	specific	low	pitch	beyond	which	one	cannot	
progress	downward	by	one	semitone.	On	theoretically	unbounded	spaces	that	can	be	
perceived	only	in	part,	see	GMIT,	27.	
	
28.	What	I	have	been	calling	uniform,	Tymoczko	(2009)	calls	homogenous	and	parallelized.	
The	latter	term	means	that	one	can	move	a	given	interval	from	point	to	point,	applying	it	
anywhere	in	the	space.	
	
29.	The	GIS	introduced	in	Chapter	2	would	be	especially	well	suited	to	modeling	the	
interval	in	question.	It	would	further	distinguish	the	G4⟶Eb4	at	the	outset	of	the	Fifth	from	
the	same	pitch	succession	in	Eb	major	(say,	in	the	primary	theme	area	of	the	Eroica),	or	
from	an	enharmonically	equivalent	succession	in	E	minor	(say,	in	the	“new	theme”	in	the	
Eroica	development	[e.g.,	cello,	downbeat	of	m.	285	to	that	of	m.	286]).	
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30.	While	my	rewording	focuses	on	listening	experiences	stimulated	by	analytical	
reflection,	it	is	not	clear	from	his	comment	that	sorts	of	listening	contexts	Lewin	has	in	
mind.	He	may	indeed	have	meant	that	multiplicity	is	a	fact	of	everyday	musical	experience:	
when	we	hear	music	in	any	context,	we	“intuit”	multiple	musical	spaces	at	once	and	thus	
hear	intervallic	relationships	in	manifold	ways—even	when	we	are	not	in	an	analytically	
reflective	mode.	This	may	be	true,	but	I	am	not	sure	how	one	could	test	the	idea.	nor	do	I	
know	what	exactly	is	meant	by	“intuit”	and	“intuition”	in	Lewin’s	passage.	Is	the	listener	
consciously	aware	of	these	manifold	“intuitions”?	Or	are	they	perhaps	instead	a	congeries	
of	more	or	less	inchoate	sensations	that	one	has	when	listening,	which	can	be	brought	into	
focused	through	analytical	reflection?	I	am	more	comfortable	with	the	latter	position,	
which	moves	toward	my	rewording.	
	
31. ℤ is a common label for the set of integers, taken from the German Zahlen (numerals). 
 
32. Lewin (GMIT, 16–17) discusses the discrepancy between the familiar ordinal intervallic 
names of tonal theory (tenths, fifths, thirds, etc.), which indicate number of scale steps 
spanned between two pitches, and the intervals in a scalar diatonic GIS, which indicate the 
number of scale steps up from one pitch to another (negative steps are steps down). The 
GIS introduced in Chapter 2 employs the familiar ordinal names for intervals between scale 
degrees. 
 
33. Adjacent pitches here correspond to the “steps” in Fred Lerdahl’s “triadic space” (2001) 
or to “steps” in the “chordal scale” of William Rothstein’s imaginary continuo (1991, 296). 
 
34. IVLS is once again (ℤ, +). Note, however, that the integers now represent acoustically 
larger intervals than did the same group elements in the GIS of Figure 1.2(b). For example, 
in the GIS of 1.2(b) int(G2, B2) = +2, while in the GIS of 1.2(c), int(G2, B2) = +1. Hook 
2007a offers relevant comments on relating two GISes that have the same abstract group of 
intervals (like (ℤ, +) here), through the group elements in the two different GISes may 
represent intervals of different acoustic size. See also Tymoczko 2008 and 2009. 
 
35. The cellist can emphasize the partial series by placing a slight agogic accent on the 
opening G2, a gesture that makes good musical sense anyway, given the work’s upcoming 
stream of constant sixteenth notes. The partials activated by the G2 are an octave higher 
than those in Figure 1.2(d), but they nevertheless still suggest the pertinence of the just-
ratio GIS in this resonant opening. 
 
36. I have worded this carefully: interval k in 1.2(d) is a skip in the overtone series above 
G1. It is not, however, a “skip” in the GIS, in the same sense that j and k are “skips” in the 
GIS of 1.2(c)–further evidence of a shift in conceptual space. In 1.2(c) the space S of the GIS 
consists of the pitches of the G-major arpeggio, which are spanned by “steps” (modeled by 
additive integers). In the GIS underlying 1.2(d), the space S in fact consists of an infinitely 
dense set of pitches, which are spanned by frequency ratios (modeled by multiplicative 
rational numbers). The group IVLS in this GIS consists of all of the positive rational 
numbers–not just the low-integer ratios explored in the figure (3:2, 5:3, and so on), but also 
higher integer ratios like 16:15 (a “major semitone” in Pythagorean theory), and even 
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enormous integer ratios such as 531,441:524,288 (the acoustically tiny Pythagorean 
comma). In conformance with GIS Condition (B), the space S of the GIS thus includes 
infinitely many pitches in the gap between, say, G2 and D3. (For example, it includes the 
pitch residing a Pythagorean comma above G2.) This makes clear that the GIS structuring 
Figure 1.2(d) is not a linearly plotted space of “steps” and “skips” as in 1.2(b) and (c)–it is a 
space of frequency ratios, which has a considerably different shape. 
 
37. Note that we could also use the functional notation from the discussion of GISes above 
as a replacement for any one of the arrows in this table: for example we could write 
ResC(D) = C. 
 
38. Functions that are one-to-one and onto are also called bijections. For further discussion, 
see the entry for Function in the Glossary. 
 
39. Most of the familiar transformations in transformational theory are operations (that is, 
they are one-to-one and onto, and thus have inverses). The neo-Riemannian 
transformations for example, are all operations, as are the familiar Tn and In operations on 
pitch classes from atonal theory. 
 
40. Satyendra 2004 offers a lucid account of this process of translation, which Lewin 
defines formally at the beginning of Chapter 7 in GMIT. 
 
41. We are dealing with a group of operations–the integers under addition. The operations 
act simply transitively on the infinite set of diatonic pitches, from which our node contents 
are drawn. the networks in Figure 1.5 can thus be translated into GIS terms if we so desire. 
 
42. Peter Smith (2000, 6) make suggestive observations along these lines, especially 
involving the way A4’s evident structural status is undercut by the articulation, which 
causes it to “lead ahead to F#.” 
 
43.  Other transformations could take X to X’, such as Jonathan Bernard’s “unfolding” (1987, 
74–75), or Lewin’s related FLIPSTART (GMIT, 189). The resulting configuration would 
then need to be transposed by -1 to produce X’, once again demonstrating the thematic role 
of -1 in the music. 
 
44. Note that in Figure 1.5(d) I have drawn an arrow from B2 directly to D3, bypassing the 
C#3 on beat two of m. 7, in agreement with Schubert’s slurring. The reading corresponds 
Peter Smith’s understanding of C# as a passing tone (2000, 9, Ex. 4b). See also the 
Schenkerian sketch in Figure 1.8. 
 
45. On the role of reversals as “closural,” see Narmour 1990. 
 
46. For example, the F#4 in m. 2 is understood to have a dotted-half duration, as it is the 
melodic pitch that implicitly controls the entire bar. 
 



	 29	

47. This is a transformational equivalent of the problematic GIS space discussed above (and 
in GMIT, 29–30). I employ it here to show its musical intuitiveness, and to show that it can 
work as a transformational system, through it is formally awkward: one must posit an 
element a in the space S of durations that corresponds to a “duration-less instant.” Any 
duration x is transformed to a if it is acted on by a negative duration whose absolute value 
is greater than x’s. An elegant way around this problem is to treat the system in question 
not as a transformational system at all, but as a system based on a “tangent space,” as 
explored in Tymoczko 2009. Such spaces admit of bounded “dead ends” beyond which no 
transformations or intervals may be conceived. Our duration-less instant is one such dead 
end. 
 
48. Such pitch/time transformational perspectives offer fruitful ways to think about 
Schubert’s vividly somatic gestural language. For a compelling discussion of the thematic 
role of gesture in Schubert, see Hatten 2004. 
 
49. Mm. 1–7 are a sentence in William Caplin’s (1998) sense. X and X’ correspond to the 
basic idea (b.i.) and its repetition (b.i.’). The increase in harmonic rhythm and surface 
activity in mm. 5ff. is typical of a sentence’s continuation phrase. This increase in activity is 
visibly evident in the “piling up of gestures” shown on the right-hand side of Figure 1.4(b). 
 
50. Formally, (+3, 1/3)-1 = (-3, 3). In making this statement, we rely on the fact that the 
group of transformations in question is a direct product group, as discussed in the Glossary. 
Notice that the inversional relationship between these pitch/duration pairs does not hold 
in the additive networks of 1.6(b) and 1.6(d). 
 
Glossary	
 
Argument:	see	function.	
Automorphism:	an	isomorphism	from	a	group	to	itself.	
Bijection:	see	function.	
Binary	composition:	The	“inner	law”	in	a	group	or	semigroup	that	dictates	how	any	two	
elements	in	the	group	or	semigroup	combine	to	create	a	third	element.	
Cartesian	product:	The	Cartesian	product	of	two	sets A and B, notated A x B, is the set of 
all ordered pairs of the form (a, b), such that a is a member of A and b is a member of B. 
Commutativity: Two group elements f and g commute if f • g = . To take a music-
theoretical example, transpositions Tm and Tn in atonal theory always commute with one 
antoher. By contrast, transpositions and inversions in atonal theory do not general 
commute with one another. 

A group that consists entirely of elements that commute with one another is called a 
commutative group or an Abelian group (after Niels Abel). 
Cyclic	group (ℤ, ℤn): a commutative group that can be generated by repeated iterations of 
a single group element. This elements is called the generator of the group. Finite cyclic 
groups are very familiar in music theory. The group of twelve transpositions Tn is a cyclic 
group of order 12, notated ℤ12; it can be generated by twelve iterations of T1, T11, T5, or T7. 
The infinite cyclic group, notated ℤ, is isomorphic to the integers under addition. 
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Function: a function f from set X to set Y sends every element x in X to some element y in Y. 
We can either write f(x) = y or x-f⟶y to indicate the action of function f sending x to y. Set 
X is called the domain of the function, while the set of outputs that the function produces is 
called the range. The element x in the expression f(x) = y is called the argument, while y is 
called the value or image.  

Note that f sends each element in X to only one element in Y. If f sends all of the 
elements in X to different elements in Y, we say that the function is one-eo-one, or an 
injection. If every element in Y is the target of some element in X under f, we say that f is 
onto, or a surjection. If f is both one-to-one and onto we say that it is a bijection. For f to be 
a bijection from X to Y the cardinality of X must equal that of Y. 
Directed	Graph	(digraph): A graph whose set E of edges consists of ordered pairs of 
elements from the vertex set V. More formally, a directed graph is a relation on V. The 
ordered pairs in E are often called directed edges and are usually drawn with arrows. 
Directed graphs (which Lewing calls “node/arrow systems”) are central to 
transformational graphs and networks. 
Generalized	Interval	System	(GIS): A central construct in transformational theory, used 
to rener intervallic statements and apperceptions formal. A Generalized Interval System, or 
GIS, is an ordered triple (S, IVLS, int), in which S is a ste, IVLS is a group, and int is a 
function  from the Cartesian product S x S into IVLS. A GIS must satisfy two conditions (as 
defined in GMIT, Def. 2.3.1): 

(A): For all r, s, and t in S, int(r, s)int(s, t)= int(r,t). 
(B): For every s in S and every I in IVLS, there must exist a unique t in S such that 

int(s, t)= i. 
Graph: A set V of vertics (or “nodes” or “dots”) and a set E of edges (or “lines”), which are 
two-element subsets of V. 

Note that this definitions says nothing about pictures of nodes and lines. I graph is 
fully defined simply by enumerating the elements of its sets V and E. For example, we can 
define a graph G = (VG, EG) such that VG = {1, 2, 3} and EG  = {{1, 2}, {1, 3}}. We could draw a 
picture to depict graph G containing three dots or nodes, labeled 1, 2, and 3, with lines 
connecting 1 and 2, and 1 and 3. But such a picture is not of the esence for the graph—it is 
fully defined by the enumeration of the elements of VG  and EG above. …. 

Not all of the elements of V need to have lines adjacent to them in a graph. One can 
in fact define a graph with no edges at all; it would simply consist of vertices—“dots” 
unattached to one another by “lines.” In other words, the set E may be empty. The set V, by 
contrast, must be nonempty and finite. 
Group: a basic algebraic structure that consits of a set along with a binary composition that 
allows one to combine any two elements from the set to generate a third element in the set. 
The fact that the element so generated ia a member of the set satisfies the property of 
Closure. To qualify as a group, the structure must satisfy three more properties. Existence 
of an identity: There must be one element e in the group such that, when it is composed 
with any other element g in the group (via the binary composition), g is the result. (The 
label e comes from the German Einheit). Existence of inverses: For every element g in the 
group there exists an element g-1 such that g composed with g-1 yields the identity element 
e. Associativity: Given three group elements f, g, and h, then f • (g • h) =  (f •g) • h. 
Homomorphism: A function that maps the elements from one group to those in another so 
as to preserve the action of the binary composition. The homomophism h from group G to 
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group H sends the product of elements g1 and g2 in G to the product of h(g1) and h(g2) in H. 
If we notate the binary composition in group G as • and the binary composition in group H 
as *, then we write h (g1 • g2) = h (g1) * h (g2). 
Involution: A group element g is an involution if it is its own inverse—that is, if g • g = e. 
Isomorphism: a homomophism that is one-to-one and onto (i.e., a bijection). If two groups 
can be mapped onto one another via isomorphism, they have the same underlying 
algebraic structure and are said to be isomorphic.  
Operation: a transformation that is one-to-one and onto (i.e., bijective). For more, see 
transformation. 
Ordered	pair,	ordered	n-tuple: A pair of elements notated in parentheses and separated 
by a comma for which order matters. (a, b) means “a, then b.” (a, b) is distinct from the 
ordered pair (b, a). One may also have ordered n-tuples of any length.  
Relation: Any subset of a Cartesian product. 
Semigroup: A basic algebraic structure consisting of a set and a binary composition that 
allows any two elements of the set to combine to produce a thrid element of the set. Unlike 
a group, a semigroup only needs to satisfy two properties: closure and associativity. Put 
another way, a group is a special kind of semigroup, one with two additional structural 
propertis; existence of an identity, and existence of inverses. 
Set: A finite or infinite collection of distint elements. The elements are distinct in that none 
of them occurs more than once in the set (a set that contains duplicates is called a 
multiset). If the elements of a set are considered unordered, they are enclosed in curly 
brackets {}. If they are considered ordered, they are enclosed in parentheses (). … 

The set B is a subset of the set A if all of the elements of B are also members of A. … 
We say that B is a proper subset if it does not contain all of A. Given B as a subset of A, we 
can say conversely that A is s superset of B. A is a proper superset of B is A contains 
elements not in B. 

In a Generalized Interval System or GIS, a set is any finite subset of elements from 
the space S of the GIS. 
Simple	transitivity: A gorup acts on a set in simply transitive fashion if, for any s and t in 
the set, there is only one element g in the group such that g takes s to t. 
Subgroup: A subset H of elements from a group G that satisfies all four of the conditions for 
a group under the initial binary composition (closure, existence of an identity, existence of 
inverses, associativity). The subgroup H will always contain the identity element of the 
group G. 
Transformation: In transformational theory, a transformation is a function from a set to 
itself. An operation is a transformation that is a bijection—that is, one-to-one and onto. 

Most of the familiar transformation from atonal theory and transformational theory 
are in fact operations. For example, the transposition and inversions of atonal theory are 
operations. Tn maps the set of twelve pcs one-to-one and onto itself, adding n to each pc 
inteber. In also maps the set of twelve pcs one-to-one and onto itself, subtracting each pc 
from n. 
Transformational	graphs	and	networks: A central construction of transformational 
theory, meant to model dynamic relationships among musical entities. A transformational 
graph is a digraph whose arrows have been labeled with transformations from some 
semigroup (which may be a group). Lewin stipulates that the transformations on the 
arrows must “compose” in a certain way, so that the transformations on any two arrow 
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pathes between the same two nodes sum to the same semigroup element. Hook (2007a) 
has loosened this requirement (see section 3.3.4). 

A transformational network is a transformational graph whose nodes have been 
filled with elements from some set S, in accorance with the labels on the graph’s arrows. 
Transformational	theory: A branch of systematic music theory that seeks to mdel 
dynamic and relational aspects of musical experience via Generalized Interval Systems (or 
GISes) and transformational graphs and networks. The founational text of transformational 
theory is Lewin’s 1987 treatise Generalized Musical Intervals and Transformations (GMIT). 
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